Battlespace Awareness: Heterogeneous Sensor Maps of Large Scale, Complex Environments

Abstract : Robots require high-quality maps-internal representations of their operating workspace-to localize, path plan, and perceive their environment. Until recently, these maps were restricted to sparse, 2D representations due to computational, memory, and sensor limitations. With the widespread adoption of high-quality sensors and graphics processors for parallel processing, these restrictions no longer apply: dense 3D maps are feasible to compute in real time (i.e., at the input sensor's frame rate). This thesis presents the theory and system to create large-scale dense 3D maps (i.e., reconstruct continuous surface models) using only sensors found on modern autonomous automobiles: 2D laser, 3D laser, and cameras. We demonstrate our system fusing data from both laser and camera sensors to reconstruct 7.3 km of urban environments. We evaluate the quantitative performance of our proposed method through the use of synthetic and real-world datasets. With only stereo camera inputs, our regularizer reduces the 3D reconstruction metric error between 27% to 36%with a final median accuracy ranging between 4 cm to 8 cm.

[1]  Manuel Menezes de Oliveira Neto,et al.  A hole-filling strategy for reconstruction of smooth surfaces in range images , 2003, 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003).

[2]  Paul W. Fieguth,et al.  A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure , 2015, Adv. Eng. Informatics.

[3]  Edwin Olson,et al.  Real-time correlative scan matching , 2009, 2009 IEEE International Conference on Robotics and Automation.

[4]  Nassir Navab,et al.  Deeper Depth Prediction with Fully Convolutional Residual Networks , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[5]  Rob Fergus,et al.  Depth Map Prediction from a Single Image using a Multi-Scale Deep Network , 2014, NIPS.

[6]  Heinz H. Bauschke,et al.  What is... a Fenchel Conjugate , 2012 .

[7]  Daniel Cremers,et al.  Real-Time Dense Geometry from a Handheld Camera , 2010, DAGM-Symposium.

[8]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[9]  Billie F. Spencer,et al.  Concrete Crack Assessment Using Digital Image Processing and 3D Scene Reconstruction , 2016, J. Comput. Civ. Eng..

[10]  Steve Marschner,et al.  Filling holes in complex surfaces using volumetric diffusion , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[11]  Paul Newman,et al.  Distraction suppression for vision-based pose estimation at city scales , 2013, 2013 IEEE International Conference on Robotics and Automation.

[12]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[13]  Paul Newman,et al.  BOR ^2 2 G: Building Optimal Regularised Reconstructions with GPUs (in Cubes) , 2015, FSR.

[14]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[15]  John Amanatides,et al.  A Fast Voxel Traversal Algorithm for Ray Tracing , 1987, Eurographics.

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  Roberto Cipolla,et al.  PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[18]  Paul Newman,et al.  What lies behind: Recovering hidden shape in dense mapping , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Lu Ma,et al.  Large Scale Dense Visual Inertial SLAM , 2015, FSR.

[20]  Paul Newman,et al.  Too much TV is bad: Dense reconstruction from sparse laser with non-convex regularisation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[21]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[22]  Olaf Kähler,et al.  Real-Time 3D Tracking and Reconstruction on Mobile Phones , 2015, IEEE Transactions on Visualization and Computer Graphics.

[23]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[24]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[25]  Patrick Knupp,et al.  Remarks on Mesh Quality. , 2007 .

[26]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[27]  Giulio Sandini,et al.  Active Tracking Strategy for Monocular Depth Inference over Multiple Frames , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Ming Zeng,et al.  A memory-efficient kinectfusion using octree , 2012, CVM'12.

[29]  Paul Newman,et al.  Localisation using the appearance of prior structure , 2014 .

[30]  Mani Golparvar-Fard,et al.  Image-Based Automated 3D Crack Detection for Post-disaster Building Assessment , 2014, J. Comput. Civ. Eng..

[31]  Burcu Akinci,et al.  Combining Reality Capture Technologies for Construction Defect Detection: A Case Study , 2003 .

[32]  Paul Newman,et al.  LAPS-II: 6-DoF day and night visual localisation with prior 3D structure for autonomous road vehicles , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[33]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[34]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[35]  Paul Newman,et al.  Experience based navigation : theory, practice and implementation , 2012 .

[36]  Shahram Izadi,et al.  MonoFusion: Real-time 3D reconstruction of small scenes with a single web camera , 2013, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[37]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[38]  Jianxiong Xiao,et al.  Reconstructing the World’s Museums , 2012, International Journal of Computer Vision.

[39]  Paul Newman,et al.  What could move? Finding cars, pedestrians and bicyclists in 3D laser data , 2012, 2012 IEEE International Conference on Robotics and Automation.

[40]  Horst Bischof,et al.  CP-Census: A Novel Model for Dense Variational Scene Flow from RGB-D Data , 2014, BMVC.

[41]  Paul Newman,et al.  LAPS - localisation using appearance of prior structure: 6-DoF monocular camera localisation using prior pointclouds , 2012, 2012 IEEE International Conference on Robotics and Automation.

[42]  Hugh F. Durrant-Whyte,et al.  Gaussian Process modeling of large scale terrain , 2009, ICRA.

[43]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[44]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[45]  Siddhartha S. Srinivasa,et al.  Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed Signed Distance Fields , 2015, Robotics: Science and Systems.

[46]  Richard A. Newcombe,et al.  Dense visual SLAM , 2012 .

[47]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[48]  Tim Weyrich,et al.  Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion , 2013, 2013 International Conference on 3D Vision.

[49]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Horst Bischof,et al.  A Globally Optimal Algorithm for Robust TV-L1 Range Image Integration , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[52]  F. Kahl Multiple View Geometry and the -norm , 2005 .

[53]  Paul Newman,et al.  DENSER Cities: A System for Dense Efficient Reconstructions of Cities , 2016, ArXiv.

[54]  Marc Pollefeys,et al.  A Patch Prior for Dense 3D Reconstruction in Man-Made Environments , 2012, 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission.

[55]  Andreas Geiger,et al.  Efficient Large-Scale Stereo Matching , 2010, ACCV.

[56]  Paul H. J. Kelly,et al.  SLAM++: Simultaneous Localisation and Mapping at the Level of Objects , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  Paul Newman,et al.  1 year, 1000 km: The Oxford RobotCar dataset , 2017, Int. J. Robotics Res..

[58]  A. Owen A robust hybrid of lasso and ridge regression , 2006 .

[59]  Stefan Kohlbrecher,et al.  A flexible and scalable SLAM system with full 3D motion estimation , 2011, 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.

[60]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[61]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[62]  Christian Früh,et al.  Google Street View: Capturing the World at Street Level , 2010, Computer.

[63]  Paul Newman,et al.  NID-SLAM: Robust Monocular SLAM Using Normalised Information Distance , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[65]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[66]  Jörg Stückler,et al.  Large-scale direct SLAM with stereo cameras , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[67]  C. Zach Fast and High Quality Fusion of Depth Maps , 2008 .

[68]  Paul Newman,et al.  TICSync: Knowing when things happened , 2011, 2011 IEEE International Conference on Robotics and Automation.

[69]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[70]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[71]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[72]  Vladlen Koltun,et al.  Dense scene reconstruction with points of interest , 2013, ACM Trans. Graph..

[73]  Olaf Kähler,et al.  Hierarchical Voxel Block Hashing for Efficient Integration of Depth Images , 2016, IEEE Robotics and Automation Letters.

[74]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[75]  P. Erdös On an extremal problem in graph theory , 1970 .

[76]  Jie Gong,et al.  Image-Based 3D Reconstruction for Posthurricane Residential Building Damage Assessment , 2016, J. Comput. Civ. Eng..

[77]  Paul Newman,et al.  Dense mono reconstruction: Living with the pain of the plain plane , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[78]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[79]  Paul Newman,et al.  Choosing a time and place for calibration of lidar-camera systems , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[80]  In-So Kweon,et al.  Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction , 2014, Sensors.

[81]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[82]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[83]  L. D. Davis Coordinate systems for the space shuttle program , 1974 .

[84]  Toshio Abe,et al.  System integration of road-crack evaluation system , 1993, Electronic Imaging.

[85]  Zhengyou Zhang,et al.  Microsoft Kinect Sensor and Its Effect , 2012, IEEE Multim..

[86]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for isosurface rendering , 1998 .

[87]  Michael Bosse,et al.  An Atlas framework for scalable mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[88]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[89]  Ingmar Posner,et al.  Wrong Today, Right Tomorrow: Experience-Based Classification for Robot Perception , 2015, FSR.

[90]  Ming Zeng,et al.  Octree-based fusion for realtime 3D reconstruction , 2013, Graph. Model..

[91]  Ashutosh Saxena,et al.  Learning Depth from Single Monocular Images , 2005, NIPS.

[92]  Jan-Michael Frahm,et al.  Detailed Real-Time Urban 3D Reconstruction from Video , 2007, International Journal of Computer Vision.

[93]  Silvio Savarese,et al.  3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction , 2016, ECCV.

[94]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[95]  Heiko Hirschmüller,et al.  Semi-Global Matching-Motivation, Developments and Applications , 2011 .

[96]  Paul Newman,et al.  Exploiting known unknowns: Scene induced cross-calibration of lidar-stereo systems , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[97]  Torsten Sattler,et al.  3D Modeling on the Go: Interactive 3D Reconstruction of Large-Scale Scenes on Mobile Devices , 2015, 2015 International Conference on 3D Vision.

[98]  John J. Leonard,et al.  Kintinuous: Spatially Extended KinectFusion , 2012, AAAI 2012.

[99]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[100]  S. Osher,et al.  A new median formula with applications to PDE based denoising , 2009 .

[101]  Richard Szeliski,et al.  Towards Internet-scale multi-view stereo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[102]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[103]  Michel Dhome,et al.  Real Time Localization and 3D Reconstruction , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[104]  Daniel Cremers,et al.  The Natural Vectorial Total Variation Which Arises from Geometric Measure Theory , 2012, SIAM J. Imaging Sci..

[105]  Dennis G. Zill,et al.  Advanced Engineering Mathematics , 2021, Technometrics.

[106]  Paul Newman,et al.  Keep Geometry in Context : Using Contextual Priors for Very-Large-Scale 3 D Dense Reconstructions , 2016 .

[107]  Paul Newman,et al.  Practice makes perfect? Managing and leveraging visual experiences for lifelong navigation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[108]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[109]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[110]  Anastasios I. Mourikis,et al.  High-fidelity sensor modeling and self-calibration in vision-aided inertial navigation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[111]  Guosheng Lin,et al.  Deep convolutional neural fields for depth estimation from a single image , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[112]  Kristian Bredies,et al.  TGV regularization for variational approaches to quantitative susceptibility mapping , 2013 .

[113]  Ajay Kumar,et al.  Defect detection in textured materials using optimized filters , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[114]  Alexander G. Gray,et al.  Fast Nonparametric Conditional Density Estimation , 2007, UAI.

[115]  Ryan M. Eustice,et al.  Fast LIDAR localization using multiresolution Gaussian mixture maps , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[116]  Jürgen Sturm,et al.  2D-SDF-SLAM: A signed distance function based SLAM frontend for laser scanners , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[117]  Olaf Kähler,et al.  Very High Frame Rate Volumetric Integration of Depth Images on Mobile Devices , 2015, IEEE Transactions on Visualization and Computer Graphics.

[118]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[119]  Daniel Cremers,et al.  Large-Scale Multi-resolution Surface Reconstruction from RGB-D Sequences , 2013, 2013 IEEE International Conference on Computer Vision.

[120]  Richard Szeliski,et al.  Building Rome in a day , 2009, ICCV.

[121]  John J. Leonard,et al.  Real-time large-scale dense RGB-D SLAM with volumetric fusion , 2014, Int. J. Robotics Res..

[122]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .