Learning diverse rankings with multi-armed bandits
暂无分享,去创建一个
Filip Radlinski | Thorsten Joachims | Robert D. Kleinberg | Robert Kleinberg | T. Joachims | Filip Radlinski
[1] M. L. Fisher,et al. An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..
[2] École d'été de probabilités de Saint-Flour,et al. École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .
[3] D. Aldous. Exchangeability and related topics , 1985 .
[4] Gerard Salton,et al. Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..
[5] Stephen E. Robertson,et al. Okapi at TREC-3 , 1994, TREC.
[6] Stephen E. Robertson,et al. GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .
[7] S. Robertson. The probability ranking principle in IR , 1997 .
[8] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[9] Samir Khuller,et al. The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..
[10] Thore Graepel,et al. Large Margin Rank Boundaries for Ordinal Regression , 2000 .
[11] Y. Freund,et al. The non-stochastic multi-armed bandit problem , 2001 .
[12] Peter Auer,et al. The Nonstochastic Multiarmed Bandit Problem , 2002, SIAM J. Comput..
[13] Thorsten Joachims,et al. Optimizing search engines using clickthrough data , 2002, KDD.
[14] William W. Cohen,et al. Beyond independent relevance: methods and evaluation metrics for subtopic retrieval , 2003, SIGIR.
[15] Peter Auer,et al. Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.
[16] Filip Radlinski,et al. Query chains: learning to rank from implicit feedback , 2005, KDD '05.
[17] Hua Li,et al. Improving web search results using affinity graph , 2005, SIGIR '05.
[18] Gregory N. Hullender,et al. Learning to rank using gradient descent , 2005, ICML.
[19] Wei Chu,et al. Gaussian Processes for Ordinal Regression , 2005, J. Mach. Learn. Res..
[20] W. Bruce Croft,et al. A Markov random field model for term dependencies , 2005, SIGIR '05.
[21] Eric Brill,et al. Improving web search ranking by incorporating user behavior information , 2006, SIGIR.
[22] Falk Scholer,et al. User performance versus precision measures for simple search tasks , 2006, SIGIR.
[23] Quoc V. Le,et al. Learning to Rank with Nonsmooth Cost Functions , 2006, NIPS.
[24] David R. Karger,et al. Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .
[25] Filip Radlinski,et al. A support vector method for optimizing average precision , 2007, SIGIR.
[26] Susan T. Dumais,et al. Characterizing the value of personalizing search , 2007, SIGIR.
[27] Filip Radlinski,et al. Active exploration for learning rankings from clickthrough data , 2007, KDD '07.
[28] Xiaojin Zhu,et al. Improving Diversity in Ranking using Absorbing Random Walks , 2007, NAACL.
[29] Quoc V. Le,et al. Learning to Rank with Non-Smooth Cost Functions , 2007 .
[30] Stephen E. Robertson,et al. SoftRank: optimizing non-smooth rank metrics , 2008, WSDM '08.
[31] Matthew J. Streeter,et al. An Online Algorithm for Maximizing Submodular Functions , 2008, NIPS.