Object Detection — Model of Foreground and Background —

Object detection is a basic problem of image understanding in a real environment. It can be defined as means to segment an image into foreground regions and background regions. There can be two approaches in object detection. One is to use characteristics of appearance of target objects. The other is to user characteristics of background. Those characteristics are referred as to foreground model and background model respectively. Those models are obtained not only by prior knowledge but also by examples gathered on line under operation. In this survey, we focus on background model and foreground model proposed in recent object detection researches. We also discuss model acquisition, learning, and classifier employed in them.

[1]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Michael Harville,et al.  Adaptive video background modeling using color and depth , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[3]  I. Haritaoglu,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002 .

[4]  Richard I. Hartley,et al.  Novelty Detection in Image Sequences with Dynamic Background , 2004, ECCV Workshop SMVP.

[5]  Sudeep Sarkar,et al.  Perceptual Organization Based Computational Model for Robust Segmentation of Moving Objects , 2002, Comput. Vis. Image Underst..

[6]  Liang-Hua Chen,et al.  Extraction of video object with complex motion , 2004, Pattern Recognit. Lett..

[7]  Takeo Kanade,et al.  Advances in Cooperative Multi-Sensor Video Surveillance , 1999 .

[8]  Kazuhiro Kimura,et al.  Moving Object Detection from Optical Flow without Empirical Thresholds , 1998 .

[9]  Sergio A. Velastin,et al.  Automatic congestion detection system for underground platforms , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[10]  Aaron F. Bobick,et al.  Fast Lighting Independent Background Subtraction , 2004, International Journal of Computer Vision.

[11]  Trevor Darrell,et al.  Background estimation and removal based on range and color , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[12]  Patrick Bouthemy,et al.  A region-level motion-based graph representation and labeling for tracking a spatial image partition , 2000, Pattern Recognit..

[13]  Murat Kunt,et al.  Spatiotemporal Segmentation Based on Region Merging , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  C. Wöhler,et al.  A TIME-DELAY NEURAL NETWORK ALGORITHM FOR REAL-TIME PEDESTRIAN RECOGNITION , 1998 .

[15]  Jan-Olof Eklundh,et al.  Statistical background subtraction for a mobile observer , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[16]  Robert C. Bolles,et al.  Background modeling for segmentation of video-rate stereo sequences , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[17]  David J. Kriegman,et al.  What is the set of images of an object under all possible lighting conditions? , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Amnon Shashua,et al.  On Photometric Issues in 3D Visual Recognition from a Single 2D Image , 2004, International Journal of Computer Vision.

[19]  Robert Pless,et al.  Evaluation of local models of dynamic backgrounds , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[20]  Trevor Darrell,et al.  Integrated Person Tracking Using Stereo, Color, and Pattern Detection , 2000, International Journal of Computer Vision.

[21]  Kazuhiko Yamamoto,et al.  Moving object detection with mobile stereo omni-directional system (SOS) based on motion compensatory inter-frame depth subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[22]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[24]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Geoffrey D. Sullivan,et al.  A Generic Deformable Model for Vehicle Recognition , 1995, BMVC.

[26]  Peter W. Hallinan A low-dimensional representation of human faces for arbitrary lighting conditions , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[27]  W. Eric L. Grimson,et al.  Using adaptive tracking to classify and monitor activities in a site , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[28]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[29]  Stephen J. Maybank,et al.  Visual Surveillance for Moving Vehicles , 1998, International Journal of Computer Vision.

[30]  Paul H. Lewis,et al.  Extracting moving shapes by evidence gathering , 2002, Pattern Recognit..

[31]  Michael Harville,et al.  A Framework for High-Level Feedback to Adaptive, Per-Pixel, Mixture-of-Gaussian Background Models , 2002, ECCV.

[32]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Tatsuya Yoshida,et al.  Vehicle Classification System with Local-Feature Based Algorithn Using CG Model Images , 2002 .

[34]  Bohyung Han,et al.  SEQUENTIAL KERNEL DENSITY APPROXIMATION THROUGH MODE PROPAGATION: APPLICATIONS TO BACKGROUND MODELING , 2004 .

[35]  Juliana Fernandes Camapum,et al.  Spatial-Feature Parametric Clustering Applied to Motion-Based Segmentation in Camouflage , 2002, Comput. Vis. Image Underst..

[36]  Geoffrey D. Sullivan,et al.  Visual Object Recognition Using Deformable Models of Vehicles , 1995 .

[37]  Takeo Kanade,et al.  Vision and Navigation for the Carnegie-Mellon Navlab , 1987 .

[38]  Kazuhiko Sumi,et al.  Background subtraction based on cooccurrence of image variations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[39]  Olaf Munkelt,et al.  Adaptive Background Estimation and Foreground Detection using Kalman-Filtering , 1995 .

[40]  Katsushi Ikeuchi,et al.  Recognizing vehicles in infrared images using IMAP parallel vision board , 2001, IEEE Trans. Intell. Transp. Syst..

[41]  Ramakant Nevatia,et al.  Car detection in low resolution aerial images , 2003, Image Vis. Comput..

[42]  Takeo Kanade,et al.  Type classification, color estimation, and specific target detection of moving targets on public streets , 2005, Machine Vision and Applications.

[43]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  J. Xavier,et al.  Detection and Tracking of Moving Objects , 2004 .

[45]  Songde Ma,et al.  A Novel Probability Model for Background Maintenance and Subtraction , 2002 .

[46]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[47]  Mark S. Nixon,et al.  Dynamic feature extraction via the velocity Hough transform , 1997, Pattern Recognit. Lett..

[48]  Nico Karssemeijer,et al.  Computer-Aided Diagnosis in Medical Imaging , 2001, IEEE Trans. Medical Imaging.

[49]  Takeo Kanade,et al.  Layered detection for multiple overlapping objects , 2002, Object recognition supported by user interaction for service robots.

[50]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  C. K. Chow,et al.  Boundary Detection of Radiographic Images by a Threshold Method , 1971, IFIP Congress.

[52]  Kazuhiko Yamamoto,et al.  Moving object detection with mobile stereo omni-directional system (SOS) based on motion compensatory inter-frame depth subtraction , 2004, ICPR 2004.

[53]  Dorin Comaniciu,et al.  The Variable Bandwidth Mean Shift and Data-Driven Scale Selection , 2001, ICCV.

[54]  Chin-Seng Chua,et al.  Statistical background modeling for non-stationary camera , 2003, Pattern Recognit. Lett..

[55]  Trevor Darrell,et al.  Plan-view trajectory estimation with dense stereo background models , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[56]  Kazuhiko Sumi,et al.  A robust background subtraction method for changing background , 2000, Proceedings Fifth IEEE Workshop on Applications of Computer Vision.

[57]  Andrew Blake,et al.  A Probabilistic Background Model for Tracking , 2000, ECCV.

[58]  Katsushi Ikeuchi,et al.  Illumination normalization with time-dependent intrinsic images for video surveillance , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[59]  Mubarak Shah,et al.  A hierarchical approach to robust background subtraction using color and gradient information , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[60]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[61]  Y. Yagi,et al.  Human detection in outdoor scene using spatio-temporal motion analysis , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[62]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[63]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[64]  Shun'ichi Kaneko,et al.  Robust image registration by increment sign correlation , 2002, Pattern Recognit..

[65]  Takashi Matsuyama,et al.  Appearance sphere: background model for pan-tilt-zoom camera , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[66]  Larry S. Davis,et al.  W4S : A real-time system for detecting and tracking people in 2 D , 1998, eccv 1998.

[67]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[68]  Yoshiaki Shirai,et al.  Real-Time Surveillance System Detecting Persons in Complex Scenes , 2001, Real Time Imaging.

[69]  A. Shashua Geometry and Photometry in 3D Visual Recognition , 1992 .

[70]  Naoya Ohta,et al.  A statistical approach to background subtraction for surveillance systems , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[71]  Jie Zhou,et al.  A novel algorithm of adaptive background estimation , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[72]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[73]  Takeo Kanade,et al.  A stereo machine for video-rate dense depth mapping and its new applications , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[74]  Larry S. Davis,et al.  A fast background scene modeling and maintenance for outdoor surveillance , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[75]  Kenichi Kanatani,et al.  Extracting Moving Objects from a Moving Camera VideoSequence , 2005 .

[76]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[77]  R. Venkatesh Babu,et al.  Video object segmentation: a compressed domain approach , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[78]  Naokazu Yokoya,et al.  Detecting moving objects from omnidirectional dynamic images based on adaptive background subtraction , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[79]  Shihong Lao,et al.  Boosting nested cascade detector for multi-view face detection , 2004, ICPR 2004.

[80]  Rama Chellappa,et al.  Higher order statistical learning for vehicle detection in images , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[81]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[82]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..