A survey of variational and CNN-based optical flow techniques

Abstract Dense motion estimations obtained from optical flow techniques play a significant role in many image processing and computer vision tasks. Remarkable progress has been made in both theory and its application in practice. In this paper, we provide a systematic review of recent optical flow techniques with a focus on the variational method and approaches based on Convolutional Neural Networks (CNNs). These two categories have led to state-of-the-art performance. We discuss recent modifications and extensions of the original model, and highlight remaining challenges. For the first time, we provide an overview of recent CNN-based optical flow methods and discuss their potential and current limitations.

[1]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[2]  Marleen de Bruijne,et al.  Quantification of Smoothing Requirement for 3D Optic Flow Calculation of Volumetric Images , 2013, IEEE Transactions on Image Processing.

[3]  Daniel Cremers,et al.  Large displacement optical flow computation withoutwarping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[4]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[5]  Lior Wolf,et al.  PatchBatch: A Batch Augmented Loss for Optical Flow , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[7]  Polina Golland,et al.  Motion from Color , 1997, Comput. Vis. Image Underst..

[8]  Didier Stricker,et al.  Supplementary material of : CNN-based Patch Matching for Optical Flow with Thresholded Hinge Embedding Loss , 2017 .

[9]  Zhuowen Tu,et al.  Scale-Space SIFT flow , 2014, IEEE Winter Conference on Applications of Computer Vision.

[10]  Marc Pollefeys,et al.  Learning a Confidence Measure for Optical Flow , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Deqing Sun,et al.  Layered RGBD scene flow estimation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Serge J. Belongie,et al.  A Feature-based Approach for Dense Segmentation and Estimation of Large Disparity Motion , 2006, International Journal of Computer Vision.

[13]  Shai Avidan,et al.  Extended Lucas-Kanade Tracking , 2014, ECCV.

[14]  Andrew W. Fitzgibbon,et al.  Highly Overparameterized Optical Flow Using PatchMatch Belief Propagation , 2014, ECCV.

[15]  Remco C. Veltkamp,et al.  Weighted local intensity fusion method for variational optical flow estimation , 2016, Pattern Recognit..

[16]  Luc Van Gool,et al.  Fast Optical Flow Using Dense Inverse Search , 2016, ECCV.

[17]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[18]  Étienne Mémin,et al.  Three-Dimensional Motion Estimation of Atmospheric Layers From Image Sequences , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Thomas Brox,et al.  FlowNet: Learning Optical Flow with Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[20]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[21]  Andrew B. Watson,et al.  A look at motion in the frequency domain , 1983 .

[22]  Gabriel J. Brostow,et al.  Learning to find occlusion regions , 2011, CVPR 2011.

[23]  Lourdes Agapito,et al.  Robust Trajectory-Space TV-L1 Optical Flow for Non-rigid Sequences , 2011, EMMCVPR.

[24]  Joachim Weickert,et al.  Illumination-Robust Variational Optical Flow with Photometric Invariants , 2007, DAGM-Symposium.

[25]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[26]  Xiaoou Tang,et al.  LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  Michel Barlaud,et al.  Two deterministic half-quadratic regularization algorithms for computed imaging , 1994, Proceedings of 1st International Conference on Image Processing.

[28]  Christoph Schnörr,et al.  Segmentation of visual motion by minimizing convex non-quadratic functionals , 1994, ICPR.

[29]  Jian Sun,et al.  Guided Image Filtering , 2010, ECCV.

[30]  Yunsong Li,et al.  Efficient Coarse-to-Fine Patch Match for Large Displacement Optical Flow , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[32]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[33]  Daniel Cremers,et al.  Structure- and motion-adaptive regularization for high accuracy optic flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[34]  Didier Stricker,et al.  Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Nicu Sebe,et al.  Detecting anomalous events in videos by learning deep representations of appearance and motion , 2017, Comput. Vis. Image Underst..

[36]  Javier Díaz,et al.  FPGA-based real-time optical-flow system , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[37]  Satoshi Goto,et al.  VLSI Implementation of HEVC Motion Compensation With Distance Biased Direct Cache Mapping for 8K UHDTV Applications , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[38]  Gang Wang,et al.  Recurrent Spatial Pyramid CNN for Optical Flow Estimation , 2018, IEEE Transactions on Multimedia.

[39]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[40]  Caren Marzban,et al.  Optical Flow for Verification , 2010 .

[41]  Remco C. Veltkamp,et al.  A combined post-filtering method to improve accuracy of variational optical flow estimation , 2014, Pattern Recognit..

[42]  Wenbin Li,et al.  Optical Flow Estimation Using Laplacian Mesh Energy , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Daniel Cremers,et al.  An Improved Algorithm for TV-L 1 Optical Flow , 2009, Statistical and Geometrical Approaches to Visual Motion Analysis.

[44]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Bärbel Mertsching,et al.  Illumination-Robust Optical Flow Using a Local Directional Pattern , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[46]  Stefan Roth,et al.  UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss , 2017, AAAI.

[47]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[48]  William Robson Schwartz,et al.  Histograms of Optical Flow Orientation and Magnitude and Entropy to Detect Anomalous Events in Videos , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[49]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[50]  Brendan McCane,et al.  Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms , 1998, BMVC.

[51]  Wei Xie,et al.  Variational method for joint optical flow estimation and edge-aware image restoration , 2017, Pattern Recognit..

[52]  Michael Elad,et al.  Recursive Optical Flow Estimation - Adaptive Filtering Approach , 1998, J. Vis. Commun. Image Represent..

[53]  Lior Wolf,et al.  Optical Flow Requires Multiple Strategies (but Only One Network) , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Michael J. Black,et al.  Optical Flow Estimation Using a Spatial Pyramid Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  N. Paragios,et al.  A high-quality video denoising algorithm based on reliable motion estimation , 2010 .

[56]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Adam Finkelstein,et al.  The Generalized PatchMatch Correspondence Algorithm , 2010, ECCV.

[58]  Yasuyuki Matsushita,et al.  Motion detail preserving optical flow estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[59]  Thomas Brox,et al.  A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Martial Hebert,et al.  Occlusion Boundaries from Motion: Low-Level Detection and Mid-Level Reasoning , 2009, International Journal of Computer Vision.

[61]  Michael J. Black,et al.  Learning Optical Flow , 2008, ECCV.

[62]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[63]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[64]  Timo Kohlberger,et al.  A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods , 2006, International Journal of Computer Vision.

[65]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[66]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[67]  Joost van de Weijer,et al.  Robust optical flow from photometric invariants , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[68]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[69]  Matthijs Douze,et al.  Deep Clustering for Unsupervised Learning of Visual Features , 2018, ECCV.

[70]  Baoxin Li,et al.  Fusing disparate object signatures for salient object detection in video , 2017, Pattern Recognit..

[71]  Serge J. Belongie,et al.  A Feature-Based Approach for Determining Dense Long Range Correspondences , 2004, ECCV.

[72]  Seth J. Teller,et al.  Particle Video: Long-Range Motion Estimation Using Point Trajectories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[73]  Carsten Rother,et al.  FusionFlow: Discrete-continuous optimization for optical flow estimation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[74]  Patrick Pérez,et al.  Dense estimation and object-based segmentation of the optical flow with robust techniques , 1998, IEEE Trans. Image Process..

[75]  Xuezhi Xiang,et al.  Deep Optical Flow Supervised Learning With Prior Assumptions , 2018, IEEE Access.

[76]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[77]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[78]  Stefano Soatto,et al.  Sparse Occlusion Detection with Optical Flow , 2012, International Journal of Computer Vision.

[79]  Ruzena Bajcsy,et al.  Local Occlusion Detection under Deformations Using Topological Invariants , 2010, ECCV.

[80]  Victor Solo,et al.  A data-driven method for choosing smoothing parameters in optical flow problems , 1997, Proceedings of International Conference on Image Processing.

[81]  Min Bai,et al.  Exploiting Semantic Information and Deep Matching for Optical Flow , 2016, ECCV.

[82]  Richard Szeliski,et al.  Prediction error as a quality metric for motion and stereo , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[83]  Baoxin Li,et al.  MSR-CNN: Applying motion salient region based descriptors for action recognition , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[84]  J. P. Lewis Fast Normalized Cross-Correlation , 2010 .

[85]  Patrick Pérez,et al.  Hierarchical Estimation and Segmentation of Dense Motion Fields , 2002, International Journal of Computer Vision.

[86]  Nahum Kiryati,et al.  Piecewise-Smooth Dense Optical Flow via Level Sets , 2006, International Journal of Computer Vision.

[87]  Cordelia Schmid,et al.  EpicFlow: Edge-preserving interpolation of correspondences for optical flow , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[88]  Remco C. Veltkamp,et al.  Adaptive guided image filter for warping in variational optical flow computation , 2016, Signal Process..

[89]  Patrick Bouthemy,et al.  Determining Occlusions from Space and Time Image Reconstructions , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[90]  Andrew Blake,et al.  Fusion Moves for Markov Random Field Optimization , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[91]  Yi Yang,et al.  Occlusion Aware Unsupervised Learning of Optical Flow , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[92]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[93]  Yong Jae Lee,et al.  Track and Segment: An Iterative Unsupervised Approach for Video Object Proposals , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[94]  Wei Xie,et al.  Weighted root mean square approach to select the optimal smoothness parameter of the variational optical flow algorithms , 2012 .

[95]  Thomas Brox,et al.  Uncertainty Estimates and Multi-hypotheses Networks for Optical Flow , 2018, ECCV.

[96]  Qionghai Dai,et al.  Occlusion-Aware Motion Layer Extraction Under Large Interframe Motions , 2011, IEEE Transactions on Image Processing.

[97]  Konstantinos G. Derpanis,et al.  Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness , 2016, ECCV Workshops.

[98]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[99]  Michael J. Black,et al.  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them , 2013, International Journal of Computer Vision.

[100]  William B. Thompson,et al.  Exploiting Discontinuities in Optical Flow , 1998, International Journal of Computer Vision.

[101]  Rachid Deriche,et al.  Computing Optical Flow via Variational Techniques , 1999, SIAM J. Appl. Math..

[102]  Olga Veksler,et al.  Markov random fields with efficient approximations , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[103]  Yan Niu,et al.  Optical flow estimation in the presence of fast or discontinuous motion. , 2010 .

[104]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[105]  Aamir Saeed Malik,et al.  An evaluation of optical flow algorithms for crowd analytics in surveillance system , 2016, 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS).

[106]  Zhigang Tu,et al.  Variational Optical Flow Algorithms for Motion Estimation , 2015 .

[107]  Satoshi Goto,et al.  Ultra-High-Throughput VLSI Architecture of H.265/HEVC CABAC Encoder for UHDTV Applications , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[108]  Zhanyi Hu,et al.  MSLD: A robust descriptor for line matching , 2009, Pattern Recognit..

[109]  Alexei A. Efros,et al.  Seeing 3D Chairs: Exemplar Part-Based 2D-3D Alignment Using a Large Dataset of CAD Models , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[110]  Zeyun Yu,et al.  Dense Descriptors for Optical Flow Estimation: A Comparative Study , 2017, J. Imaging.

[111]  Christian Heipke,et al.  Discrete Optimization for Optical Flow , 2015, GCPR.

[112]  Michael J. Black,et al.  Video Segmentation via Object Flow , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[113]  Jan Kautz,et al.  PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[114]  Alexander G. Hauptmann,et al.  Guided Optical Flow Learning , 2017, ArXiv.

[115]  Enric Meinhardt,et al.  FALDOI: A New Minimization Strategy for Large Displacement Variational Optical Flow , 2016, Journal of Mathematical Imaging and Vision.

[116]  Ying Wu,et al.  Sparsity model for robust optical flow estimation at motion discontinuities , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[117]  Roland Göcke,et al.  Optical flow estimation using Fourier Mellin Transform , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[118]  Chuang Gan,et al.  End-to-End Learning of Motion Representation for Video Understanding , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[119]  Paul Smith,et al.  Layered motion segmentation and depth ordering by tracking edges , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[120]  Ioannis Patras,et al.  Unsupervised convolutional neural networks for motion estimation , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[121]  Xiaogang Wang,et al.  Optical flow estimation using learned sparse model , 2011, 2011 International Conference on Computer Vision.

[122]  Xiong Dun,et al.  Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging , 2017, ACM Trans. Graph..

[123]  Daniel Cremers,et al.  An Unbiased Second-Order Prior for High-Accuracy Motion Estimation , 2008, DAGM-Symposium.

[124]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[125]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[126]  Xu-Cheng Yin,et al.  Text Detection, Tracking and Recognition in Video: A Comprehensive Survey. , 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[128]  Patrick Bouthemy,et al.  Optical flow modeling and computation: A survey , 2015, Comput. Vis. Image Underst..

[129]  Hailin Jin,et al.  Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow , 2014, CVPR.

[130]  Dirk A. Lorenz,et al.  Image Sequence Interpolation Based on Optical Flow, Segmentation, and Optimal Control , 2012, IEEE Transactions on Image Processing.

[131]  Minh N. Do,et al.  PatchMatch Filter: Edge-Aware Filtering Meets Randomized Search for Visual Correspondence , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[132]  Eli Shechtman,et al.  PatchMatch: a randomized correspondence algorithm for structural image editing , 2009, ACM Trans. Graph..

[133]  Xiaojing Song,et al.  A Kalman Filter-Integrated Optical Flow Method for Velocity Sensing of Mobile Robots , 2011, IEEE/ASME Transactions on Mechatronics.

[134]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[135]  Tobias Senst,et al.  Robust Local Optical Flow for Feature Tracking , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[136]  Andrés Bruhn,et al.  Adaptive Integration of Feature Matches into Variational Optical Flow Methods , 2012, ACCV.

[137]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[138]  Joachim Weickert,et al.  A Scale-Space Approach to Nonlocal Optical Flow Calculations , 1999, Scale-Space.

[139]  Zhen Chen,et al.  Robust Non-Local TV- $L^{1}$ Optical Flow Estimation With Occlusion Detection , 2017, IEEE Transactions on Image Processing.

[140]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[141]  Michael J. Black,et al.  Optical Flow with Semantic Segmentation and Localized Layers , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[142]  Uwe Franke,et al.  Feature- and depth-supported modified total variation optical flow for 3D motion field estimation in real scenes , 2011, CVPR 2011.

[143]  Yiannis Aloimonos,et al.  The Statistics of Optical Flow , 2001, Comput. Vis. Image Underst..

[144]  Michael J. Black,et al.  On the Spatial Statistics of Optical Flow , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[145]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[146]  Michael J. Brooks,et al.  Locally Oriented Optical Flow Computation , 2012, IEEE Transactions on Image Processing.

[147]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[148]  Bingbing Ni,et al.  Unsupervised Deep Learning for Optical Flow Estimation , 2017, AAAI.

[149]  Rudolf Mester,et al.  A Statistical Confidence Measure for Optical Flows , 2008, ECCV.

[150]  Ming-Hsuan Yang,et al.  Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks , 2017, NIPS.

[151]  Jitendra Malik,et al.  Occlusion boundary detection and figure/ground assignment from optical flow , 2011, CVPR 2011.

[152]  Deqing Sun,et al.  A Bayesian approach to adaptive video super resolution , 2011, CVPR 2011.

[153]  Brendan McCane,et al.  On Benchmarking Optical Flow , 2001, Comput. Vis. Image Underst..

[154]  Victor Solo A sure-fired way to choose smoothing parameters in ill-conditioned inverse problems , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[155]  É. Mémin,et al.  3 D motion estimation of atmospheric layers from image sequences , 2007 .

[156]  T. Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik a Survey on Variational Optic Flow Methods for Small Displacements a Survey on Variational Optic Flow Methods for Small Displacements , 2022 .

[157]  Mikhail Mozerov Constrained Optical Flow Estimation as a Matching Problem , 2013, IEEE Transactions on Image Processing.

[158]  Hui Cheng,et al.  Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection , 2006, ECCV.

[159]  Cordelia Schmid,et al.  DeepFlow: Large Displacement Optical Flow with Deep Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[160]  Ying Wu,et al.  Large Displacement Optical Flow from Nearest Neighbor Fields , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[161]  R. Hetherington The Perception of the Visual World , 1952 .

[162]  Yuanwei Li Pyramidal Gradient Matching for Optical Flow Estimation , 2017, ArXiv.

[163]  Sumetee kesorn Visual Navigation for Mobile Robots: a Survey , 2012 .

[164]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[165]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[166]  Konrad Schindler,et al.  An Evaluation of Data Costs for Optical Flow , 2013, GCPR.

[167]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Different Scenes , 2008, ECCV.

[168]  Romain Dupont,et al.  A General Dense Image Matching Framework Combining Direct and Feature-Based Costs , 2013, 2013 IEEE International Conference on Computer Vision.

[169]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[170]  Remco C. Veltkamp,et al.  Estimating accurate optical flow in the presence of motion blur , 2015, J. Electronic Imaging.

[171]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[172]  Michael J. Black,et al.  Layered segmentation and optical flow estimation over time , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[173]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .

[174]  Andrew J. Barry High‐speed autonomous obstacle avoidance with pushbroom stereo , 2018, J. Field Robotics.

[175]  Vladlen Koltun,et al.  Efficient Nonlocal Regularization for Optical Flow , 2012, ECCV.

[176]  Michael J. Black,et al.  Robust dynamic motion estimation over time , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[177]  Andreas Geiger,et al.  Object scene flow for autonomous vehicles , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[178]  Yunsong Li,et al.  Robust Interpolation of Correspondences for Large Displacement Optical Flow , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[179]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[180]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[181]  Rachid Deriche,et al.  Symmetrical Dense Optical Flow Estimation with Occlusions Detection , 2002, ECCV.

[182]  Hans-Peter Seidel,et al.  Complementary Optic Flow , 2009, EMMCVPR.

[183]  P. Anandan Measuring Visual Motion From Image Sequences , 1987 .

[184]  Jia Xu,et al.  Accurate Optical Flow via Direct Cost Volume Processing , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[185]  Henning Zimmer,et al.  Modeling temporal coherence for optical flow , 2011, 2011 International Conference on Computer Vision.

[186]  Andreas Geiger,et al.  Deep Discrete Flow , 2016, ACCV.

[187]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[188]  Stefano Soatto,et al.  Detecting Occlusions as an Inverse Problem , 2015, Journal of Mathematical Imaging and Vision.

[189]  Li Xu,et al.  A Segmentation Based Variational Model for Accurate Optical Flow Estimation , 2008, ECCV.

[190]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[191]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[192]  Thomas Brox,et al.  End-to-End Learning of Video Super-Resolution with Motion Compensation , 2017, GCPR.

[193]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[194]  Stefano Soatto,et al.  S2F: Slow-to-Fast Interpolator Flow , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[195]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[196]  Janusz Konrad,et al.  Occlusion-Aware Optical Flow Estimation , 2008, IEEE Transactions on Image Processing.

[197]  Horst Bischof,et al.  Motion estimation with non-local total variation regularization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[198]  Feng Liu,et al.  Video Frame Interpolation via Adaptive Convolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[199]  Li Zhang,et al.  Optical flow in the presence of spatially-varying motion blur , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[200]  Giulio Sandini,et al.  Divergent stereo for robot navigation: learning from bees , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[201]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[202]  Xi Li,et al.  Deep Optical Flow Estimation Via Multi-Scale Correspondence Structure Learning , 2017, IJCAI.

[203]  Nicolas Papadakis,et al.  Layered Estimation of Atmospheric Mesoscale Dynamics From Satellite Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[204]  Lars Lau Raket Local smoothness for global optical flow , 2012, 2012 19th IEEE International Conference on Image Processing.

[205]  Remco C. Veltkamp,et al.  Improved Color Patch Similarity Measure Based Weighted Median Filter , 2014, ACCV.

[206]  Cordelia Schmid,et al.  DeepMatching: Hierarchical Deformable Dense Matching , 2015, International Journal of Computer Vision.