Integrating Behavioral and Biological Models of Classical Conditioning

[1]  E. W. Kairiss,et al.  Long-term synaptic potentiation. , 1988, Science.

[2]  F. Crépel,et al.  Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study , 1988, Brain Research.

[3]  A. Klopf A neuronal model of classical conditioning , 1988 .

[4]  G. Bower,et al.  Evaluating an adaptive network model of human learning , 1988 .

[5]  Michael Davis,et al.  Anxiety and the Amygdala: Pharmacological and Anatomical Analysis of the Fear-Potentiated Startle Paradigm , 1988 .

[6]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[7]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[8]  M. Sakurai Synaptic modification of parallel fibre‐Purkinje cell transmission in in vitro guinea‐pig cerebellar slices. , 1987, The Journal of physiology.

[9]  J. Voogd,et al.  The projection of the nucleus reticularis tegmenti pontis and adjacent regions of the pontine nuclei to the central cerebellar nuclei in the cat , 1987, The Journal of comparative neurology.

[10]  David B. Parker,et al.  A comparison of algorithms for neuron-like cells , 1987 .

[11]  Richard F. Thompson,et al.  Modeling the Neural Substrates of Associative Learning and Memory: A Computational Approach , 1987 .

[12]  D J Rosen,et al.  Classical conditioning of the rabbit eyelid response with a mossy-fiber stimulation CS: I. Pontine nuclei and middle cerebellar peduncle stimulation. , 1986, Behavioral neuroscience.

[13]  Richard F. Thompson The neurobiology of learning and memory. , 1986, Science.

[14]  Richard F. Thompson,et al.  The role of the middle cerebellar peduncle in acquisition and retention of the rabbit’s classically conditioned nictitating membrane response , 1986 .

[15]  R. F. Thompson,et al.  Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Karen D. Davis,et al.  Modulatory influences of red nucleus stimulation on the somatosensory responses of cat trigeminal subnucleus oralis neurons , 1986, Experimental Neurology.

[17]  Jeffrey L. Elman,et al.  Interactive processes in speech perception: the TRACE model , 1986 .

[18]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[19]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[20]  Richard Granger,et al.  The computation of contingency in classical conditioning , 1986 .

[21]  M. Kano,et al.  Long-term depression of parallel fibre synapses following stimulation of climbing fibres , 1985, Brain Research.

[22]  T. Crow,et al.  Conditioned modification of phototactic behavior in Hermissenda. II. Differential adaptation of B-photoreceptors , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[24]  D. Alkon Calcium-mediated reduction of ionic currents: a biophysical memory trace. , 1984, Science.

[25]  E. Kandel,et al.  Is there a cell-biological alphabet for simple forms of learning? , 1984, Psychological review.

[26]  I. Gormezano,et al.  The role of the accessory abducens nucleus in the rabbit nictitating membrane response , 1984, Brain Research.

[27]  G. A. Clark,et al.  Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses , 1984, Brain Research.

[28]  J. W. Moore,et al.  Red nucleus lesions disrupt the classically conditioned nictitating membrane response in rabbits , 1983, Behavioural Brain Research.

[29]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[30]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[31]  E. Kandel,et al.  Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica. , 1983, Science.

[32]  E. Kandel,et al.  A cellular mechanism of classical conditioning in Aplysia: activity-dependent amplification of presynaptic facilitation. , 1983, Science.

[33]  J. Byrne,et al.  Associative conditioning of single sensory neurons suggests a cellular mechanism for learning. , 1983, Science.

[34]  G. A. Clark,et al.  Initial localization of the memory trace for a basic form of learning. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[36]  G. A. Clark,et al.  Effects of ipsilateral rostral pontine reticular lesions on retention of classically conditioned nictitating membrane and eyelid responses , 1981 .

[37]  G. A. Clark,et al.  The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses , 1981 .

[38]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[39]  J. Pearce,et al.  A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. , 1980, Psychological review.

[40]  W. Levy,et al.  Synapses as associative memory elements in the hippocampal formation , 1979, Brain Research.

[41]  Stephen A. Ritz,et al.  Distinctive features, categorical perception, and probability learning: some applications of a neural model , 1977 .

[42]  W. Terry Effects of priming unconditioned stimulus representation in short-term memory on Pavlovian conditioning. , 1976, Journal of experimental psychology. Animal behavior processes.

[43]  A. R. Wagner,et al.  Transient variations in responding to Pavlovian conditioned stimuli have implications for the mechanisms of “priming” , 1976, Animal learning & behavior.

[44]  A. R. Wagner,et al.  Backward conditioning to a CS following an expected vs. a surprising UCS , 1975 .

[45]  N. Mackintosh A Theory of Attention: Variations in the Associability of Stimuli with Reinforcement , 1975 .

[46]  R. Rescorla,et al.  Extinction of Pavlovian conditioned inhibition. , 1974, Journal of comparative and physiological psychology.

[47]  Eric R. Kandel,et al.  Long-Term Habituation of a Defensive Withdrawal Reflex in Aplysia , 1972, Science.

[48]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[49]  J. Albus A Theory of Cerebellar Function , 1971 .

[50]  G. Horn Habituation and Memory , 1971 .

[51]  P. Groves,et al.  Habituation: a dual-process theory. , 1970, Psychological review.

[52]  R. Rescorla Probability of shock in the presence and absence of CS in fear conditioning. , 1968, Journal of comparative and physiological psychology.

[53]  K. Haberlandt,et al.  Stimulus selection in animal discrimination learning. , 1968, Journal of experimental psychology.

[54]  L. Kamin Predictability, surprise, attention, and conditioning , 1967 .

[55]  R. R. Bush,et al.  A model for stimulus generalization and discrimination. , 1951, Psychological review.

[56]  K. Spence The nature of discrimination learning in animals. , 1936 .