Algorithms for rough terrain trajectory planning

This paper deals with motion planning on rough terrain for mobile robots. The aim is to develop efficient algorithms, suitable for various types of robots. On rough terrain, the planned trajectory must verify several validity constraints : stability of the robot, mechanical limits and collision avoidance with the ground. Our approach relies on a static and kinematic model of the robot. Efficient geometric algorithms have been developed, taking advantage of each vehicle's specificities. Motion planning relies on an incremental search in the discretized configuration space and uses efficient heuristics based on terrain characteristic to limit the size of the search space. Simulation results present trajectories planned in a few seconds. The second part takes into account uncertainties to improve trajectory robustness: uncertainties on the terrain model and the position of the robot. The adaptation of the previous algorithms allows us to find robust trajectories, without any excessive time increase.

[1]  Erann Gat,et al.  Behavior control for robotic exploration of planetary surfaces , 1994, IEEE Trans. Robotics Autom..

[2]  Shane Farritor,et al.  Physics-based planning for planetary exploration , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[3]  Moëz Cherif,et al.  Motion planning for all-terrain vehicles: a physical modeling approach for coping with dynamic and contact interaction constraints , 1999, IEEE Trans. Robotics Autom..

[4]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[5]  Mahmoud Tarokh,et al.  A Comparison of Two Path Planners for Planetary Rovers , 1999 .

[6]  Martial Hebert,et al.  A complete navigation system for goal acquisition in unknown environments , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[7]  Anthony Stentz Optimal and efficient path planning for partially-known environments , 1994 .

[8]  Thierry Siméon,et al.  Motion generation for a rover on rough terrains , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[9]  Thierry Siméon,et al.  Free space representation for a mobile robot moving on a rough terrain , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[10]  Thierry Siméon,et al.  Autonomous navigation in outdoor environment: adaptive approach and experiment , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[11]  Erann Gat,et al.  Mars microrover navigation: Performance evaluation and enhancement , 1995, Auton. Robots.

[12]  William Whittaker,et al.  The Atacama Desert Trek: outcomes , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[13]  J. Latombe,et al.  On nonholonomic mobile robots and optimal maneuvering , 1989, Proceedings. IEEE International Symposium on Intelligent Control 1989.

[14]  J. Matijevic,et al.  Mars Pathfinder Microrover , 1995, Auton. Robots.

[15]  Christian Laugier,et al.  Predicting the dynamic behaviour of a planetary vehicle using physical modeling , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[16]  Thierry Siméon,et al.  Planetary exploration by a mobile robot: Mission teleprogramming and autonomous navigation , 1995, Auton. Robots.

[17]  Alain Haït Algorithmes pour la planification de trajectoires robustes d'un robot mobile autonome sur un terrain accidente , 1998 .

[18]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[19]  Thierry Siméon,et al.  Robust motion planning for rough terrain navigation , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[20]  Christian Laugier,et al.  A kinematic simulator for motion planning of a mobile robot on a terrain , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[21]  Zvi Shiller,et al.  Motion planning for Mars Rover , 1999, Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353).

[22]  Homayoun Seraji Traversability index: a new concept for planetary rovers , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[24]  Philippe Bidaud,et al.  Dynamic Analysis of Off-Road Vehicles , 1995, ISER.

[25]  Clark F. Olson,et al.  Enhanced Mars rover navigation techniques , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[26]  Joel W. Burdick,et al.  An autonomous sensor-based path-planner for planetary microrovers , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).