A new hybrid iterative method for solution of equilibrium problems and fixed point problems for an inverse strongly monotone operator and a nonexpansive mapping

In this paper, we introduce an iterative scheme by a new hybrid method for finding a common element of the set of fixed points of a nonexpansive mapping, the set of solutions of an equilibrium problem and the set of solutions of the variational inequality for α-inverse-strongly monotone mappings in a real Hilbert space. We show that the iterative sequence converges strongly to a common element of the above three sets under some parametric controlling conditions by the new hybrid method which is introduced by Takahashi et al. (J. Math. Anal. Appl., doi: 10.1016/j.jmaa.2007.09.062, 2007). The results are connected with Tada and Takahashi’s result [A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mappings and an equilibrium problem, J. Optim. Theory Appl. 133, 359–370, 2007]. Moreover, our result is applicable to a wide class of mappings.

[1]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[2]  Wataru Takahashi,et al.  Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces , 2007 .

[3]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[4]  M. Solodov,et al.  A hybrid projection-proximal point algorithm. , 1998 .

[5]  Regina Sandra Burachik,et al.  An Outer Approximation Method for the Variational Inequality Problem , 2005, SIAM J. Control. Optim..

[6]  S. Reich Weak convergence theorems for nonexpansive mappings in Banach spaces , 1979 .

[7]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[8]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[9]  Sjur Didrik Flåm,et al.  Equilibrium programming using proximal-like algorithms , 1997, Math. Program..

[10]  W. Takahashi Nonlinear Functional Analysis , 2000 .

[11]  Hong-Kun Xu An Iterative Approach to Quadratic Optimization , 2003 .

[12]  I. Yamada The Hybrid Steepest Descent Method for the Variational Inequality Problem over the Intersection of Fixed Point Sets of Nonexpansive Mappings , 2001 .

[13]  A. Moudafi,et al.  Proximal and Dynamical Approaches to Equilibrium Problems , 1999 .

[14]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[15]  M. Solodov,et al.  A New Projection Method for Variational Inequality Problems , 1999 .

[16]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[17]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[18]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[19]  Wataru Takahashi,et al.  Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings , 2003 .

[20]  J. Lindenstrauss,et al.  An example concerning fixed points , 1975 .

[21]  Jen-Chih Yao,et al.  Pseudomonotone Complementarity Problems and Variational Inequalities , 2005 .

[22]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[23]  Jen-Chih Yao,et al.  Iterative Algorithm for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities , 2005 .

[24]  Wataru Takahashi,et al.  Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings , 2005 .

[25]  Gao Gai-liang Weak Convergence Theorems for Nonexpansive Mappings , 2004 .

[26]  Wataru Takahashi,et al.  Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces , 2008 .

[27]  William A. Kirk,et al.  A Fixed Point Theorem for Mappings which do not Increase Distances , 1965 .

[28]  Wataru Takahashi,et al.  Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem , 2007 .