Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation

Reproducing real world dynamics in simulation is critical for the development of new control and perception methods. This task typically involves the estimation of simulation parameter distributions from observed rollouts through an inverse inference problem characterized by multi-modality and skewed distributions. We address this challenging problem through a novel Bayesian inference approach that approximates a posterior distribution over simulation parameters given real sensor measurements. By extending the commonly used Gaussian likelihood model for trajectories via the multiple-shooting formulation, our gradient-based particle inference algorithm, Stein Variational Gradient Descent, is able to identify highly nonlinear, underactuated systems. We leverage GPU code generation and differentiable simulation to evaluate the likelihood and its gradient for many particles in parallel. Our algorithm infers nonparametric distributions over simulation parameters more accurately than comparable baselines and handles constraints over parameters efficiently through gradient-based optimization. We evaluate estimation performance on several physical experiments. On an underactuated mechanism where a 7-DOF robot arm excites an object with an unknown mass configuration, we demonstrate how the inference technique can identify symmetries between the parameters and provide highly accurate predictions. Website: https://uscresl.github.io/prob-diff-sim

[1]  Du Q. Huynh,et al.  Metrics for 3D Rotations: Comparison and Analysis , 2009, Journal of Mathematical Imaging and Vision.

[2]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[3]  D. Fox,et al.  Stein Variational Model Predictive Control , 2020, CoRL.

[4]  Ming C. Lin,et al.  Differentiable Cloth Simulation for Inverse Problems , 2019, NeurIPS.

[5]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[6]  Christopher Joseph Pal,et al.  Active Domain Randomization , 2019, CoRL.

[7]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[8]  Ruzena Bajcsy,et al.  Inferring the Material Properties of Granular Media for Robotic Tasks , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Mark E. Borsuk,et al.  On Monte Carlo methods for Bayesian inference , 2003 .

[10]  Matthieu Geist,et al.  Performance evaluation for particle filters , 2011, 14th International Conference on Information Fusion.

[11]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[12]  Yashraj S. Narang,et al.  STReSSD: Sim-To-Real from Sound for Stochastic Dynamics , 2020, CoRL.

[13]  Takeo Kanade,et al.  Parameter identification of robot dynamics , 1985, 1985 24th IEEE Conference on Decision and Control.

[14]  Jan Swevers,et al.  Identification of Contact Parameters from Stiff Multi-point Contact Robotic Operations , 2010, Int. J. Robotics Res..

[15]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[16]  J. Timmer,et al.  Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting. , 2007, IET systems biology.

[17]  Frédo Durand,et al.  DiffTaichi: Differentiable Programming for Physical Simulation , 2020, ICLR.

[18]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[19]  Nikolaus Correll,et al.  Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study , 2014, ArXiv.

[20]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[21]  Jiancheng Liu,et al.  ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[22]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[23]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[24]  Ming C. Lin,et al.  Scalable Differentiable Physics for Learning and Control , 2020, ICML.

[25]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[26]  Qiang Liu,et al.  Stein Variational Gradient Descent as Gradient Flow , 2017, NIPS.

[27]  Bodo Heimann,et al.  Friction and rigid body identification of robot dynamics , 2001 .

[28]  Trevor Darrell,et al.  Auto-Tuned Sim-to-Real Transfer , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[29]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[30]  Joshua B. Tenenbaum,et al.  End-to-End Differentiable Physics for Learning and Control , 2018, NeurIPS.

[31]  Atil Iscen,et al.  Sim-to-Real: Learning Agile Locomotion For Quadruped Robots , 2018, Robotics: Science and Systems.

[32]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[33]  Maxime Gautier,et al.  Identification of robots inertial parameters by means of spectrum analysis , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[34]  H. Bock,et al.  Recent Advances in Parameteridentification Techniques for O.D.E. , 1983 .

[35]  Iain Murray,et al.  Fast $\epsilon$-free Inference of Simulation Models with Bayesian Conditional Density Estimation , 2016 .

[36]  Dieter Fox,et al.  BayesSim: adaptive domain randomization via probabilistic inference for robotics simulators , 2019, Robotics: Science and Systems.

[37]  Qing Wang,et al.  Divergence Estimation for Multidimensional Densities Via $k$-Nearest-Neighbor Distances , 2009, IEEE Transactions on Information Theory.

[38]  Yashraj S. Narang,et al.  DiSECt: A Differentiable Simulation Engine for Autonomous Robotic Cutting , 2021, Robotics: Science and Systems.

[39]  Ali Hakan Tor,et al.  A Modified Multiple Shooting Algorithm for Parameter Estimation in ODEs Using Adjoint Sensitivity Analysis , 2020, Appl. Math. Comput..

[40]  Sanja Fidler,et al.  gradSim: Differentiable simulation for system identification and visuomotor control , 2021, ICLR.

[41]  Pasquale Chiacchio,et al.  A systematic procedure for the identification of dynamic parameters of robot manipulators , 1999, Robotica.

[42]  Patrick Kidger,et al.  Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU , 2020, ICLR.

[43]  Gaurav S. Sukhatme,et al.  NeuralSim: Augmenting Differentiable Simulators with Neural Networks , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[44]  Yongbo Wang,et al.  Markov Chain Monte Carlo (MCMC) methods for parameter estimation of a novel hybrid redundant robot , 2011 .

[45]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[46]  Gaurav S. Sukhatme,et al.  Physics-based Simulation of Continuous-Wave LIDAR for Localization, Calibration and Tracking , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[47]  Emanuel Todorov,et al.  Physically consistent state estimation and system identification for contacts , 2015, 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).

[48]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[49]  Gilles Louppe,et al.  The frontier of simulation-based inference , 2020, Proceedings of the National Academy of Sciences.

[50]  Tomasz Kornuta,et al.  Learning beyond simulated physics , 2018 .

[51]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[52]  Nima Fazeli,et al.  Identifiability Analysis of Planar Rigid-Body Frictional Contact , 2017, ISRR.

[53]  Roberto Calandra,et al.  Objective Mismatch in Model-based Reinforcement Learning , 2020, L4DC.

[54]  Jan Peters,et al.  Bayesian Domain Randomization for Sim-to-Real Transfer , 2020, ArXiv.

[55]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[56]  Jie Cheng,et al.  CUDA by Example: An Introduction to General-Purpose GPU Programming , 2010, Scalable Comput. Pract. Exp..

[57]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[58]  J. Platt,et al.  Constrained Differential Optimization for Neural Networks , 1988 .

[59]  Dilin Wang,et al.  Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm , 2016, NIPS.

[60]  Brett Ninness,et al.  Bayesian system identification via Markov chain Monte Carlo techniques , 2010, Autom..

[61]  Pasquale Chiacchio,et al.  Identification of Dynamic Parameters for a Conventional Industrial Manipulator , 1994 .

[62]  Stefan Schaal,et al.  Bayesian robot system identification with input and output noise , 2011, Neural Networks.

[63]  Bennett L. Fox,et al.  Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.

[64]  Wittawat Jitkrittum,et al.  Large sample analysis of the median heuristic , 2017, 1707.07269.

[65]  Bernhard Thomaszewski,et al.  ADD , 2020, ACM Trans. Graph..

[66]  Jakub W. Pachocki,et al.  Learning dexterous in-hand manipulation , 2018, Int. J. Robotics Res..

[67]  Iain Murray,et al.  Fast $\epsilon$-free Inference of Simulation Models with Bayesian Conditional Density Estimation , 2016, 1605.06376.

[68]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[69]  Qiang Liu,et al.  Stein Variational Gradient Descent Without Gradient , 2018, ICML.

[70]  Cordelia Schmid,et al.  Differentiable Simulation for Physical System Identification , 2021, IEEE Robotics and Automation Letters.

[71]  Andrea L. Thomaz,et al.  TuneNet: One-Shot Residual Tuning for System Identification and Sim-to-Real Robot Task Transfer , 2019, CoRL.

[72]  Yevgen Chebotar,et al.  Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[73]  S. Srihari Mixture Density Networks , 1994 .

[74]  Rolf Mahnken,et al.  Identification of Material Parameters for Constitutive Equations , 2004 .

[75]  Yashraj S. Narang,et al.  Interpreting and Predicting Tactile Signals via a Physics-Based and Data-Driven Framework , 2020, Robotics: Science and Systems.

[76]  NinnessBrett,et al.  Bayesian system identification via Markov chain Monte Carlo techniques , 2010 .

[77]  Fabio Tozeto Ramos,et al.  Bayesian Learning of Conditional Kernel Mean Embeddings for Automatic Likelihood-Free Inference , 2019, AISTATS.

[78]  Chun. Loo,et al.  BAYESIAN APPROACH TO SYSTEM IDENTIFICATION , 1981 .

[79]  Joshua B. Tenenbaum,et al.  PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable Physics , 2021, ICLR.