Robust Sampled-Data Bilateral Teleoperation: Single-Rate and Multirate Stabilization

This paper investigates robust sampled-data control design strategies for nonlinear bilateral teleoperators exposed to communication constraints, using discrete-time approximate models of the master and slave robots and assuming both single-rate and multirate sampling. The single-rate design guarantees input-to-state stability of the (unknown) exact discrete-time model in a semiglobal practical sense, in spite of norm-bounded channel uncertainties. Then imposing different sampling rates on positions/velocities or torque inputs in each side of the system, a multirate scheme is proposed and shown to maintain similar stability properties under a well-known Nyquist frequency assumption on control torques. Simulation results verify the advantages of our direct sampled-data design. The example also shows that the multirate controller successfully stabilizes the teleoperation system even when the single-rate bilateral setup is ineffective in the presence of different sampling rates.

[1]  H. Marquez Nonlinear Control Systems: Analysis and Design , 2003, IEEE Transactions on Automatic Control.

[2]  Horacio J. Marquez,et al.  Dissipativity of nonlinear multirate sampled-data systems under emulation design , 2013, Autom..

[3]  Jean-Jacques E. Slotine,et al.  Stable Adaptive Teleoperation , 1990, 1990 American Control Conference.

[4]  Mark W. Spong,et al.  Bilateral control of teleoperators with time delay , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[5]  Ilia G. Polushin,et al.  Multirate versions of sampled-data stabilization of nonlinear systems , 2004, Autom..

[6]  Romeo Ortega,et al.  Passivity-based control for bilateral teleoperation: A tutorial , 2011, Autom..

[7]  Mahdi Tavakoli,et al.  Discrete-time bilateral teleoperation: modelling and stability analysis , 2008 .

[8]  Horacio J. Marquez,et al.  Input-to-error stable observer for nonlinear sampled-data systems with application to one-sided Lipschitz systems , 2016, Autom..

[9]  Dragan Nesic,et al.  Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model , 2006, Autom..

[10]  Robert J. Anderson,et al.  Building a modular robot control system using passivity and scattering theory , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  Mark W. Spong,et al.  Bilateral control of teleoperators with time delay , 1989 .

[12]  Stefano Stramigioli,et al.  About the Use of Port Concepts for Passive Geometric Telemanipulation with Varying Time Delays , 2002 .

[13]  Mark W. Spong,et al.  Bilateral teleoperation: An historical survey , 2006, Autom..

[14]  Ahmet íStüNtüRk,et al.  Output feedback stabilization of nonlinear dual-rate sampled-data systems via an approximate discrete-time model , 2012 .

[15]  Eduardo D. Sontag,et al.  The ISS philosophy as a unifying framework for stability-like behavior , 2001 .

[16]  Peter Xiaoping Liu,et al.  A Review of Bilateral Sampled-Data Control of Teleoperators , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[17]  Dragan Nesic,et al.  A note on input-to-state stabilization for nonlinear sampled-data systems , 2002, IEEE Trans. Autom. Control..

[18]  Dragan Nesic,et al.  A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models , 2004, IEEE Transactions on Automatic Control.

[19]  Mahdi Tavakoli,et al.  Absolute Stability Analysis of Sampled-Data Scaled Bilateral Teleoperation Systems , 2013 .

[20]  Wei Chen,et al.  Stabilization of networked control systems with multirate sampling , 2013, Autom..

[21]  Ilia G. Polushin,et al.  Stabilization of bilaterally controlled teleoperators with communication delay: An ISS approach , 2003 .

[22]  Xi Liu,et al.  Input-to-state stabilization for nonlinear dual-rate sampled-data systems via approximate discrete-time model , 2008, Autom..

[23]  Dragan Nesic,et al.  Open- and Closed-Loop Dissipation Inequalities Under Sampling and Controller Emulation , 2002, Eur. J. Control.

[24]  Hassan K. Khalil,et al.  Multirate Sampled-Data Output Feedback Control With Application to Smart Material Actuated Systems , 2009, IEEE Transactions on Automatic Control.

[25]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[26]  Ahmet Üstüntürk Output feedback stabilization of nonlinear dual-rate sampled-data systems via an approximate discrete-time model , 2012, Autom..

[27]  Mahdi Tavakoli,et al.  A passivity criterion for sampled-data bilateral teleoperation systems , 2011, 2011 IEEE World Haptics Conference.

[28]  Horacio J. Marquez,et al.  Multirate Output Feedback Control of Nonlinear Networked Control Systems , 2015, IEEE Transactions on Automatic Control.

[29]  Horacio J. Marquez,et al.  Multirate Observers for Nonlinear Sampled-Data Systems Using Input-to-State Stability and Discrete-Time Approximation , 2014, IEEE Transactions on Automatic Control.