Neural representation of animacy in the early visual areas: A functional MRI study

[1]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[2]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[3]  H. Abdi The General Linear Model , 2009 .

[4]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[5]  Jason P. Mitchell Activity in right temporo-parietal junction is not selective for theory-of-mind. , 2008, Cerebral cortex.

[6]  Karl J. Friston,et al.  Modelling brain responses , 2007 .

[7]  J. Decety,et al.  The Role of the Right Temporoparietal Junction in Social Interaction: How Low-Level Computational Processes Contribute to Meta-Cognition , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[8]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[9]  N. Kanwisher,et al.  Domain specificity in visual cortex. , 2006, Cerebral cortex.

[10]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[11]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[12]  Karl J. Friston,et al.  Activation in Posterior Superior Temporal Sulcus Parallels Parameter Inducing the Percept of Animacy , 2005, Neuron.

[13]  Karl J. Friston,et al.  Modeling brain responses. , 2005, International review of neurobiology.

[14]  Mitsuo Kawato,et al.  Activation of the Human Superior Temporal Gyrus during Observation of Goal Attribution by Intentional Objects , 2004, Journal of Cognitive Neuroscience.

[15]  J. Decety,et al.  The detection of intentional contingencies in simple animations in patients with delusions of persecution , 2003, Psychological Medicine.

[16]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[17]  Alex Martin,et al.  NEURAL FOUNDATIONS FOR UNDERSTANDING SOCIAL AND MECHANICAL CONCEPTS , 2003, Cognitive neuropsychology.

[18]  C. Frith,et al.  Development and neurophysiology of mentalizing. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  Rafael Malach,et al.  Large-Scale Mirror-Symmetry Organization of Human Occipito-Temporal Object Areas , 2003, Neuron.

[21]  R. Passingham,et al.  Sleep-Related Consolidation of a Visuomotor Skill: Brain Mechanisms as Assessed by Functional Magnetic Resonance Imaging , 2003, The Journal of Neuroscience.

[22]  John E. Opfer,et al.  Identifying living and sentient kinds from dynamic information: the case of goal-directed versus aimless autonomous movement in conceptual change , 2002, Cognition.

[23]  M. Honda,et al.  The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach. , 2002, Cerebral cortex.

[24]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[25]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[26]  J. Lancaster,et al.  Using the talairach atlas with the MNI template , 2001, NeuroImage.

[27]  B. Bertenthal,et al.  Does Perception of Biological Motion Rely on Specific Brain Regions? , 2001, NeuroImage.

[28]  P. Matthews,et al.  Functional MRI cerebral activation and deactivation during finger movement , 2000, Neurology.

[29]  C. Frith,et al.  Movement and Mind: A Functional Imaging Study of Perception and Interpretation of Complex Intentional Movement Patterns , 2000, NeuroImage.

[30]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[31]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[32]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[33]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[34]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[35]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[36]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[37]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[38]  S. Baron-Cohen Mindblindness: An Essay on Autism and Theory of Mind , 1997 .

[39]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[40]  Alan C. Evans,et al.  Specific Involvement of Human Parietal Systems and the Amygdala in the Perception of Biological Motion , 1996, The Journal of Neuroscience.

[41]  G P Bingham,et al.  Dynamics and the orientation of kinematic forms in visual event recognition. , 1995, Journal of experimental psychology. Human perception and performance.

[42]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Orban,et al.  A motion area in human visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. Kaufman,et al.  Distinguishing Between Animates And Inanimates: Not By Motion Alone , 1995 .

[45]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[46]  C. Shatz,et al.  Synapses formed by identified retinogeniculate axons during the segregation of eye input , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  Brain research bulletin , 1984, Pharmacology Biochemistry and Behavior.

[49]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[50]  F. Heider,et al.  An experimental study of apparent behavior , 1944 .