SPAM: Set Preference Algorithm for Multiobjective Optimization

This paper pursues the idea of a general multiobjective optimizer that can be flexibly adapted to arbitrary user preferences--assuming that the goal is to approximate the Pareto-optimal set. It proposes the Set Preference Algorithm for Multiobjective Optimization (SPAM) the working principle of which is based on two observations: (i) current multiobjective evolutionary algorithms (MOEAs) can be regarded as hill climbers on set problems and (ii) specific user preferences are often (implicitly) expressed in terms of a binary relation on Pareto set approximations. SPAM realizes a (1 + 1)-strategy on the space of Pareto set approximations and can be used with any type of set preference relations, i.e., binary relations that define a total preorder on Pareto set approximations. The experimental results demonstrate for a range of set preference relations that SPAM provides full flexibility with respect to user preferences and is effective in optimizing according to the specified preferences. It thereby offers a new perspective on preference-guided multiobjective search.

[1]  Lothar Thiele,et al.  On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[2]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[3]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[4]  Frank Neumann,et al.  Do additional objectives make a problem harder? , 2007, GECCO '07.

[5]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[6]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[7]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[8]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[9]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[11]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[12]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[13]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[14]  Lily Rachmawati,et al.  Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[15]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[16]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[18]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[19]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[20]  Ashutosh Tiwari,et al.  Introducing user preference using Desirability Functions in Multi-Objective Evolutionary Optimisation of noisy processes , 2007, 2007 IEEE Congress on Evolutionary Computation.

[21]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[22]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[23]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[24]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[25]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[26]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[27]  D. Corne,et al.  On Metrics for Comparing Non Dominated Sets , 2001 .

[28]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.