Determining optical flow using a differential method

Abstract A comparison of different methods for determining optical flow based on local information is presented. It is shown that to overcome the aperture problem, second order differential terms of the image function are required. It is also argued that the fundamental problem of measuring optical flow is to determine the velocity in as small an aperture as possible. It is concluded that the technique of Lucas and Kanade (see Barron et al., Performance of optical flow techniques, Int. J. Computer Vision , 12 (1) (1994) 43–77) is the best generalised second order method for achieving this objective.

[1]  David J. Fleet,et al.  Phase-based disparity measurement , 1991, CVGIP Image Underst..

[2]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[3]  Tomaso A. Poggio,et al.  Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[5]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[6]  Edward H. Adelson,et al.  Probability distributions of optical flow , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[8]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[9]  David J. Fleet Measurement of image velocity , 1992 .

[10]  E. Delp,et al.  Estimating displacement vectors from an image sequence , 1989 .

[11]  David W. Murray,et al.  Experiments in the machine interpretation of visual motion , 1990 .

[12]  Peter Allen,et al.  Image-flow computation: An estimation-theoretic framework and a unified perspective , 1992, CVGIP Image Underst..

[13]  Bernd Jähne,et al.  Spatio-Temporal Image Processing , 1993, Lecture Notes in Computer Science.

[14]  Joseph K. Kearney,et al.  Optical Flow Estimation: An Error Analysis of Gradient-Based Methods with Local Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Brian G. Schunck,et al.  Image Flow Segmentation and Estimation by Constraint Line Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Jan-Olof Eklundh,et al.  Computer Vision — ECCV '94 , 1994, Lecture Notes in Computer Science.

[17]  John K. Tsotsos,et al.  Techniques for disparity measurement , 1991, CVGIP Image Underst..

[18]  A. Verri,et al.  Differential techniques for optical flow , 1990 .

[19]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[20]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[21]  A. Verri,et al.  Mathematical properties of the two-dimensional motion field: from singular points to motion parameters , 1989 .

[22]  Mandyam V. Srinivasan,et al.  Measurement of optical flow by a generalized gradient scheme , 1991 .