Falling of a Passive Compass-Gait Biped Robot Caused by a Boundary Crisis

The planar passive compass-gait biped robot on sloped surfaces is the simplest model of legged walkers. It is a two-degrees-of-freedom impulsive mechanical system known to exhibit, in response to an increase in the slope angle of the walking surface, a sequence of period-doubling bifurcations leading to chaos before falling down at some critical slope without any explanation. The fall is found to be occured with the abrupt destruction of chaos. We showed recently that a cyclicfold bifurcation is also generated in the passive walking patterns of the compass robot. The aim of this paper is to show that the fall of the passive compass-gait biped robot occurs via a global bifurcation known as boundary crisis. We show that the cyclic-fold bifurcation is the key of the occurrence of such boundary crisis. We demonstrate how the same period-three unstable periodic orbit generated from the cyclic-fold bifurcation causes the abrupt death of chaos in the passive dynamic walking and hence the fall of the compass-gait biped robot.

[1]  Safya Belghith,et al.  Intermittency and Interior Crisis as Route to Chaos in Dynamic Walking of Two Biped Robots , 2012, Int. J. Bifurc. Chaos.

[2]  S. Belghith,et al.  Cyclic-fold bifurcation in passive bipedal walking of a compass-gait biped robot with leg length discrepancy , 2011, 2011 IEEE International Conference on Mechatronics.

[3]  Hasse'ne Gritfl,et al.  Semi-passive control of a torso-driven compass-gait biped robot: bifurcation and chaos , 2011, Eighth International Multi-Conference on Systems, Signals & Devices.

[4]  B. Asady,et al.  Revision of distance minimization method for ranking of fuzzy numbers , 2011 .

[5]  Mark W. Spong,et al.  Bifurcations and chaos in passive walking of a compass-gait biped with asymmetries , 2010, 2010 IEEE International Conference on Robotics and Automation.

[6]  I. Papadakis,et al.  Characterizing black hole variability with nonlinear methods: the case of the X-ray Nova 4U 1543-47 , 2009, 0912.4676.

[7]  K. P. Harikrishnan,et al.  Combined use of correlation dimension and entropy as discriminating measures for time series analysis , 2009 .

[8]  Saeid Abbasbandy,et al.  A new approach for ranking of trapezoidal fuzzy numbers , 2009, Comput. Math. Appl..

[9]  Yantao Tian,et al.  Further Research and Comparison of Gaits for Compass-Like Biped and Kneed Passive Dynamic Walker , 2008, ICIRA.

[10]  Cristiano Maria Verrelli,et al.  An adaptive tracking control from current measurements for induction motors with uncertain load torque and rotor resistance , 2008, Autom..

[11]  R. Carlson,et al.  Stray load losses calculation routine based on the eh-star method , 2008, 2008 18th International Conference on Electrical Machines.

[12]  J. Kirtley,et al.  Induction motor stray losses and inter-bar currents , 2008, 2008 18th International Conference on Electrical Machines.

[13]  Wei Xu,et al.  Loss model establishment and efficiency optimization control of single sided linear induction motor , 2008, 2008 IEEE International Conference on Industrial Technology.

[14]  R. Ibtiouen,et al.  Improvement Approach on Rotor Time Constant Adaptation with Optimum Flux in IFOC for Induction Machines Drives , 2008 .

[15]  B. Asady,et al.  RANKING FUZZY NUMBERS BY DISTANCE MINIMIZATION , 2007 .

[16]  Mahyar Naraghi,et al.  Passive dynamic of the simplest walking model: Replacing ramps with stairs , 2007 .

[17]  T. Hajjari,et al.  Ranking Fuzzy Numbers by Sign Length , 2007 .

[18]  Leon M. Tolbert,et al.  An online rotor time constant estimator for induction machine , 2007, IEEE International Conference on Electric Machines and Drives, 2005..

[19]  Saeid Abbasbandy,et al.  A new approach to universal approximation of fuzzy functions on a discrete set of points , 2006 .

[20]  Saeid Abbasbandy,et al.  The nearest trapezoidal form of a generalized left right fuzzy number , 2006, Int. J. Approx. Reason..

[21]  Saeid Abbasbandy,et al.  Ranking of fuzzy numbers by sign distance , 2006, Inf. Sci..

[22]  G. Ambika,et al.  The Nonlinear Behavior of the Black Hole System GRS 1915+105 , 2006 .

[23]  K. P. Harikrishnan,et al.  A non subjective approach to the GP algorithm for analysing noisy time series , 2006, nlin/0603024.

[24]  Joachim Holtz,et al.  Sensorless Control of Induction Machines - With or Without Signal Injection? , 2006, IEEE Trans. Ind. Electron..

[25]  Masaki Takahashi,et al.  Biped locomotion on level ground by torso and swing-leg control based on passive-dynamic walking , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Girish Kumar Singh,et al.  A research survey of induction motor operation with non-sinusoidal supply wave forms , 2005 .

[27]  A. C.-L. Chian,et al.  Alfvén interior Crisis , 2004, Int. J. Bifurc. Chaos.

[28]  K. P. Harikrishnan,et al.  The Chaotic Behavior of the Black Hole System GRS 1915+105 , 2004, astro-ph/0403144.

[29]  Joachim Holtz,et al.  Sensorless control of induction motor drives , 2002, Proc. IEEE.

[30]  Guillermo O. García,et al.  Field-oriented controlled induction generator with loss minimization , 2002, IEEE Trans. Ind. Electron..

[31]  A. C.-L. Chian,et al.  Alfvén Boundary Crisis , 2002, Int. J. Bifurc. Chaos.

[32]  Alexandre S. Bazanella,et al.  Robust tuning of the speed loop in indirect field oriented control of induction motors , 2001, Autom..

[33]  Yeong‐Hwa Chang,et al.  Modeling and QFT‐based design of vector control induction motors , 2001 .

[34]  Liang-Hsuan Chen,et al.  An approximate approach for ranking fuzzy numbers based on left and right dominance , 2001 .

[35]  R. Krishnan,et al.  Electric Motor Drives: Modeling, Analysis, and Control , 2001 .

[36]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[37]  H. Osinga,et al.  Boundary crisis in quasiperiodically forced systems , 2000 .

[38]  J. Paradijs,et al.  A model-independent analysis of the variability of GRS 1915+105 , 2000, astro-ph/0001103.

[39]  Abraham Kandel,et al.  A new fuzzy arithmetic , 1999, Fuzzy Sets Syst..

[40]  F. Fernandez-Bernal,et al.  Model-based loss minimization for DC and AC vector controlled motors including core saturation , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[41]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.

[42]  W. Szemplińska-Stupnicka,et al.  Properties of Chaotic and Regular Boundary Crisis in Dissipative Driven Nonlinear Oscillators , 1999 .

[43]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[44]  P. Hespanha,et al.  Supervisory field‐oriented control of induction motors with uncertain rotor resistance , 1998 .

[45]  Ching-Hsue Cheng,et al.  A new approach for ranking fuzzy numbers by distance method , 1998, Fuzzy Sets Syst..

[46]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[47]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[48]  Ueda,et al.  Safe, explosive, and dangerous bifurcations in dissipative dynamical systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  Grebogi,et al.  Vertices in parameter space: Double crises which destroy chaotic attractors. , 1993, Physical review letters.

[50]  F. Choobineh,et al.  An index for ordering fuzzy numbers , 1993 .

[51]  Kennel,et al.  Method to distinguish possible chaos from colored noise and to determine embedding parameters. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[52]  Shan-Huo Chen Ranking fuzzy numbers with maximizing set and minimizing set , 1985 .

[53]  R. Yager ON CHOOSING BETWEEN FUZZY SUBSETS , 1980 .

[54]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[55]  Huibert Kwakernaak,et al.  Rating and ranking of multiple-aspect alternatives using fuzzy sets , 1976, Autom..

[56]  T. Hajjari Ranking Fuzzy Numbers Based on Ambiguity Degrees , 2011 .

[57]  L. Hong,et al.  A Boundary Crisis in High Dimensional Chaotic Systems , 2010 .

[58]  S. Abourida,et al.  REAL-TIME PLATFORM FOR THE CONTROL PROTOTYPING AND SIMULATION OF POWER ELECTRONICS AND MOTOR DRIVES , 2008 .

[59]  T. Chu,et al.  Ranking fuzzy numbers with an area between the centroid point and original point , 2002 .

[60]  Z. Kolláth,et al.  Strange Cepheids and RR Lyrae , 2001 .

[61]  Frede Blaabjerg,et al.  Analysis of Stability in Low-cost Energy Optimal Controlled PWM-VSI Fed Induction Motor Drive , 1997 .

[62]  Wanda Szemplińska-Stupnicka,et al.  Basin Boundary Bifurcations and Boundary Crisis in the Twin-Well Duffing Oscillator: Scenarios Related to the Saddle of the Large Resonant Orbit , 1997 .

[63]  P. Vas Vector control of AC machines , 1990 .

[64]  Paul C. Krause,et al.  Analysis of electric machinery , 1987 .

[65]  N. MacDonald Nonlinear dynamics , 1980, Nature.

[66]  Ramesh Jain,et al.  DECISION MAKING IN THE PRESENCE OF FUZZY VARIABLES , 1976 .

[67]  C. Thanga Raj,et al.  Particle Swarm and Fuzzy Logic Based Optimal Energy Control of Induction Motor for a Mine Hoist Load Diagram , 2022 .