Probabilistic Optimal Estimation With Uniformly Distributed Noise

The classical approach to system identification is based on stochastic assumptions about the measurement error, and provides estimates that have random nature. Worst-case identification, on the other hand, only assumes the knowledge of deterministic error bounds, and establishes guaranteed estimates, thus being in principle better suited for the use in control design. However, a main limitation of such deterministic bounds lies in their potential conservatism, thus leading to estimates of restricted use. In this paper, we propose a rapprochement between the stochastic and worst-case system identification viewpoints, which is based on the probabilistic setting of information-based complexity. The main idea in this line of research is to “discard” sets of measure at most ϵ, where ϵ is a probabilistic accuracy, from the set of deterministic estimates. Therefore, we are decreasing the so-called worst-case radius of information at the expense of a given probabilistic “risk.” In the case of uniformly distributed noise, we derive new computational results, and in particular we compute a trade-off curve, called violation function, which shows how the radius of information decreases as a function of the accuracy. To this end, we construct randomized and deterministic algorithms which provide approximations of this function. We report extensive simulations showing numerical comparisons between the stochastic, worst-case and probabilistic approaches, thus demonstrating the efficacy of the methods proposed in this paper.

[1]  Mario Sznaier,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems with Applications, Second Edition, Roberto Tempo, Giuseppe Calafiore, Fabrizio Dabbene (Eds.). Springer-Verlag, London (2013), 357, ISBN: 978-1-4471-4609-4 , 2014, Autom..

[2]  R. Tempo Robust estimation and filtering in the presence of bounded noise , 1987, 26th IEEE Conference on Decision and Control.

[3]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[4]  Giuseppe Carlo Calafiore,et al.  Radial and Uniform Distributions in Vector and Matrix Spaces for Probabilistic Robustness , 1999 .

[5]  James C. Spall,et al.  Estimation via Markov chain Monte Carlo , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[6]  R. Tempo,et al.  Maximum likelihood estimators and worst case optimal algorithms for system identification , 1988 .

[7]  Takeaki Uno,et al.  Polynomial time algorithms for maximizing the intersection volume of polytopes , 2007 .

[8]  H. G. Eggleston Intersection of Convex Sets , 1972 .

[9]  Han-Fu Chen Stochastic approximation and its applications , 2002 .

[10]  Mathukumalli Vidyasagar,et al.  System identification: a learning theory approach , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[11]  Erik Weyer Finite sample properties of system identification of ARX models under mixing conditions , 1999 .

[12]  Mathukumalli Vidyasagar,et al.  A learning theory approach to system identification and stochastic adaptive control , 2008 .

[13]  Erik Weyer,et al.  Guaranteed non-asymptotic confidence regions in system identification , 2005, Autom..

[14]  G. Goodwin,et al.  Rapprochement between bounded‐error and stochastic estimation theory , 1995 .

[15]  R. Tempo,et al.  Optimal algorithms theory for robust estimation and prediction , 1985 .

[16]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[19]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[20]  D. Amir Characterizations of Inner Product Spaces , 1986 .

[21]  Lennart Ljung,et al.  Guest Editorial: Special Issue on System Identification , 2005, IEEE Trans. Autom. Control..

[22]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[23]  M. Vidyasagar,et al.  Rates of uniform convergence of empirical means with mixing processes , 2002 .

[24]  Komei Fukuda,et al.  Exact volume computation for polytopes: a practical study , 1996 .

[25]  Roberto Tempo,et al.  A probabilistic approach to optimal estimation - Part II: algorithms and applications , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[26]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[27]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[28]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[29]  H. Woxniakowski Information-Based Complexity , 1988 .

[30]  Uwe D. Hanebeck,et al.  On combining statistical and set-theoretic estimation , 1999, Autom..

[31]  Hee-Kap Ahn,et al.  Maximum overlap of convex polytopes under translation , 2013, Comput. Geom..

[32]  Michael C. Fu,et al.  Convergence of simultaneous perturbation stochastic approximation for nondifferentiable optimization , 2003, IEEE Trans. Autom. Control..

[33]  Erik Weyer Finite sample properties of system identification of ARX models under mixing conditions , 2000, Autom..

[34]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[35]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[36]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .

[37]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[38]  Andrea Garulli,et al.  Conditional central algorithms for worst case set-membership identification and filtering , 2000, IEEE Trans. Autom. Control..

[39]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[40]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[41]  F. Tjärnström,et al.  A mixed probabilistic/bounded-error approach to parameter estimation in the presence of amplitude bounded white noise , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[42]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..

[43]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[44]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[45]  J. K. Hunter,et al.  Measure Theory , 2007 .

[46]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[47]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[48]  Brian D. O. Anderson,et al.  Model validation for control and controller validation in a prediction error identification framework - Part I: theory , 2003, Autom..

[49]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[50]  Bo Wahlberg,et al.  Introduction to the special issue on data-based modelling and system identification , 2005, Autom..

[51]  Roberto Tempo,et al.  A probabilistic approach to optimal estimation part I: Problem formulation and methodology , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[52]  Thomas D. Sandry,et al.  Probabilistic and Randomized Methods for Design Under Uncertainty , 2007, Technometrics.

[53]  Israel Zang,et al.  Nine kinds of quasiconcavity and concavity , 1981 .

[54]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[55]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[56]  Giuseppe Carlo Calafiore,et al.  Interval predictor models: Identification and reliability , 2009, Autom..

[57]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[58]  Diethard Klatte,et al.  Lower Semicontinuity of the Minimum in Parametric Convex Programs , 1997 .

[59]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[60]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[61]  Erik Weyer,et al.  Non-Asymptotic Confidence Sets for the Parameters of Linear Transfer Functions , 2010, IEEE Transactions on Automatic Control.

[62]  L. Khachiyan Complexity of Polytope Volume Computation , 1993 .

[63]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[64]  Er-Wei Bai,et al.  Optimization with few violated constraints for linear bounded error parameter estimation , 2002, IEEE Trans. Autom. Control..

[65]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[66]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[67]  R. Tempo,et al.  Optimality of central and projection algorithms for bounded uncertainty , 1986 .