Diagonalization of Polynomial-Time Deterministic Turing Machines Via Nondeterministic Turing Machine

The diagonalization technique was invented by Georg Cantor to show that there are more real numbers than algebraic numbers and is very important in {\em theoretical computer science}. In this work, we enumerate all polynomial-time deterministic Turing machines and diagonalize against all of them by a universal nondeterministic Turing machine. As a result, we obtain that there is a language $L_d$ not accepted by any polynomial-time deterministic Turing machines but accepted by a nondeterministic Turing machine running within time $O(n^k)$ for any $k\in\mathbb{N}_1$. By this, we further show that $L_d\in\mathcal{NP}$ . That is, we present a proof that $\mathcal{P}$ and $\mathcal{NP}$ differ. Meanwhile, we also show that there exists a language $L_s$ in $\mathcal{P}$ but the machine accepting it runs within time $O(n^k)$ for all $k\in\mathbb{N}_1$ and any deterministic $n^k+k$ time-bounded Turing machine for a fixed $k\in\mathbb{N}_1$ can not accept it. Lastly, we show that if $\mathcal{P}^O=\mathcal{NP}^O$ and on some rational assumptions then the set $P^O$ of all polynomial-time deterministic oracle Turing machines with $O$ is not enumerable.

[1]  Tianrong Lin Resolution of The Linear-Bounded Automata Question in The Sense of Equivalence , 2021, 2110.05942.

[2]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[3]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[4]  Avi Wigderson,et al.  Algebrization: A New Barrier in Complexity Theory , 2009, TOCT.

[5]  Lance Fortnow,et al.  Time Hierarchies: A Survey , 2007, Electron. Colloquium Comput. Complex..

[6]  Richard E. Overill,et al.  Foundations of Cryptography: Basic Tools , 2002, J. Log. Comput..

[7]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[8]  Jan Krajícek,et al.  Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.

[9]  Robert Gray,et al.  Georg Cantor and Transcendental Numbers , 1994 .

[10]  Michael Sipser,et al.  The history and status of the P versus NP question , 1992, STOC '92.

[11]  Juris Hartmanis,et al.  Gödel, von Neumann and the P =? NP Problem , 1989, Current Trends in Theoretical Computer Science.

[12]  Boris A. Trakhtenbrot,et al.  A Survey of Russian Approaches to Perebor (Brute-Force Searches) Algorithms , 1984, Annals of the History of Computing.

[13]  Stephen A. Cook,et al.  A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..

[14]  Jeffrey D. Ullman,et al.  Proceedings of the third annual ACM symposium on Theory of computing , 1971 .

[15]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[16]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[17]  Richard Edwin Stearns,et al.  Two-Tape Simulation of Multitape Turing Machines , 1966, JACM.

[18]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[19]  R. Carmichael The Theory of Functions of a Real Variable and the Theory of Fourier's Series , 1928, Nature.

[20]  Snezana Lawrence October , 1855, The Hospital.

[21]  Tianrong Lin Resolution of The Linear-Bounded Automata Question , 2021, arXiv.org.

[22]  Eric Bach,et al.  Affine Relativization: Unifying the Algebrization and Relativization Barriers , 2016, Electron. Colloquium Comput. Complex..

[23]  Horngren Datar Rajan,et al.  3RD EDITION , 2008 .

[24]  STEPHEN COOK,et al.  The P versus NP Problem , 2010, ArXiv.

[25]  Alexander A. Razborov,et al.  Natural Proofs , 2007 .

[26]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[27]  Elvira Mayordomo,et al.  P versus NP , 2004 .

[28]  Stephen A. Cook,et al.  The importance of the P versus NP question , 2003, JACM.

[29]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[30]  Lance Fortnow,et al.  Diagonalization , 2000, Bull. EATCS.

[31]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[32]  外史 竹内 Bounded Arithmetic と計算量の根本問題 , 1996 .

[33]  章聚乐 Von Neumann正则环(I) , 1990 .

[34]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[35]  A. Smautalk Goldberg,et al.  Addison-wesley publishing company , 1984 .

[36]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[37]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[38]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[39]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[40]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[41]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[42]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[43]  Konrad Reif,et al.  private communication , 1969 .

[44]  Jeffrey D. Ullman,et al.  Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.

[45]  W. Rudin Principles of mathematical analysis , 1964 .

[46]  G. H. H.,et al.  The Theory of Functions of a Real Variable and the Theory of Fourier's Series , 1907, Nature.

[47]  A. Wigderson P, N P and Mathematics – a Computational Complexity Perspective , 2022 .