Evaluating D-K iteration for control design

D-K iteration is an approach to /spl mu/ synthesis which iterates between solving an upper bound /spl mu/ analysis problem and control design via H/sub /spl infin// optimization techniques. This method often in practice results in a controller which meets the desired robustness and performance objectives. A special case of the general output feedback control problem is known as the 'full information' problem. The full information controller has a direct measurement of the plant states and input disturbances. This paper compares the synthesis of controllers for a missile via D-K iteration with an optimal, full information controller synthesized using convex optimization methods.

[1]  R. T. Reichert Robust autopilot design using μ-synthesis , 1990 .

[2]  Michael J. Todd,et al.  Feature Article - The Ellipsoid Method: A Survey , 1981, Oper. Res..

[3]  P. Khargonekar,et al.  STATESPACE SOLUTIONS TO STANDARD 2 H AND H? CONTROL PROBLEMS , 1989 .

[4]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[5]  A. Packard,et al.  Optimal, constant I/O similarity scaling for full-information and state-feedback control problems , 1992 .

[6]  Gary J. Balas,et al.  Design of robust, time-varying controllers for missile autopilots , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[7]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[8]  J. Doyle,et al.  Linear, Multivariable Robust Control With a μ Perspective , 1993 .

[9]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[10]  Michael J. Todd,et al.  The Ellipsoid Method: A Survey , 1980 .

[11]  Gary J. Balas,et al.  Control of lightly damped, flexible modes in the controller crossover region , 1994 .

[12]  R. T. Reichert,et al.  Robust autopilot design for aircraft with multiple lateral-axes controls using H/sub infinity / synthesis , 1990, 29th IEEE Conference on Decision and Control.

[13]  G. Stein,et al.  Beyond singular values and loop shapes , 1991 .

[14]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy an H(infinity)-norm bound and relations to risk sensitivity , 1988 .

[15]  A. Megretski,et al.  Frequency-domain criteria of robust stability for slowly time-varying systems , 1995, IEEE Trans. Autom. Control..

[16]  R.T. Reichert,et al.  Robust autopilot design using μ-synthesis , 1990, 1990 American Control Conference.