Variance Reduction Using Nonreversible Langevin Samplers
暂无分享,去创建一个
[1] L. Schmetterer. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .
[2] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[3] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[4] Inge S. Helland,et al. Central Limit Theorems for Martingales with Discrete or Continuous Time , 1982 .
[5] R. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm for Markov processes , 1982 .
[6] George Papanicolaou,et al. Bounds for effective parameters of heterogeneous media by analytic continuation , 1983 .
[7] Rabi Bhattacharya,et al. A Central Limit Theorem for Diffusions with Periodic Coefficients , 1985 .
[8] S. Varadhan,et al. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .
[9] D. Newton,et al. ERGODIC THEOREMS (de Gruyter Studies in Mathematics 6) , 1986 .
[10] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[11] Avellaneda,et al. Stieltjes integral representation and effective diffusivity bounds for turbulent transport. , 1989, Physical review letters.
[12] Homer F. Walker,et al. Asymptotics of solute dispersion in periodic porous media , 1989 .
[13] D. Talay,et al. Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .
[14] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[15] Andrew J. Majda,et al. An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows , 1991 .
[16] Andrew J. Majda,et al. The Effect of Mean Flows on Enhanced Diffusivity in Transport by Incompressible Periodic Velocity Fields , 1993 .
[17] C. Hwang,et al. Accelerating Gaussian Diffusions , 1993 .
[18] L. R.,et al. A Survey of Foster-Lyapunov Techniquesfor General State Space Markov ProcessesS , 1993 .
[19] S. Meyn,et al. Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.
[20] S. Meyn,et al. Exponential and Uniform Ergodicity of Markov Processes , 1995 .
[21] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[22] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[23] Radford M. Neal. Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..
[24] R. Bhatia. Matrix Analysis , 1996 .
[25] Sean P. Meyn,et al. A Liapounov bound for solutions of the Poisson equation , 1996 .
[26] R. Bhattacharya. Multiscale diffusion processes with periodic coefficients and an application to solute transport in porous media , 1999 .
[27] A. Majda,et al. SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .
[28] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[29] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[30] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[31] Antonietta Mira,et al. Ordering and Improving the Performance of Monte Carlo Markov Chains , 2001 .
[32] A. Veretennikov,et al. On the poisson equation and diffusion approximation 3 , 2001, math/0506596.
[33] G. Roberts,et al. Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .
[34] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[35] Jonathan C. Mattingly,et al. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .
[36] Radford M. Neal. Improving Asymptotic Variance of MCMC Estimators: Non-reversible Chains are Better , 2004, math/0407281.
[37] A. Bovier,et al. Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .
[38] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[39] P. Constantin,et al. Diffusion and mixing in fluid flow , 2005 .
[40] C. Hwang,et al. Accelerating diffusions , 2005, math/0505245.
[41] A. Bovier,et al. Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues , 2005 .
[42] R. Douc,et al. Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.
[43] L. Lorenzi,et al. Analytical Methods for Markov Semigroups , 2006 .
[44] E. Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[45] Peter W. Glynn,et al. Stochastic Simulation: Algorithms and Analysis , 2007 .
[46] Michael Chertkov,et al. Irreversible Monte Carlo Algorithms for Efficient Sampling , 2008, ArXiv.
[47] Chii-Ruey Hwang,et al. The behavior of the spectral gap under growing drift , 2009 .
[48] G. A. Pavliotis,et al. Asymptotic analysis of the Green–Kubo formula , 2010, 1002.4103.
[49] Yi Sun,et al. Improving the Asymptotic Performance of Markov Chain Monte-Carlo by Inserting Vortices , 2010, NIPS.
[50] Andrew M. Stuart,et al. Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations , 2009, SIAM J. Numer. Anal..
[51] T. Lelièvre,et al. Free Energy Computations: A Mathematical Perspective , 2010 .
[52] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[53] Djalil CHAFAÏ,et al. Central limit theorems for additive functionals of ergodic Markov diffusions processes , 2011, 1104.2198.
[54] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[55] Tomasz Komorowski,et al. Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation , 2012 .
[56] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[57] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[58] General Construction of Irreversible Kernel in Markov Chain Monte Carlo , 2012, 1207.0258.
[59] P. Dellaportas,et al. Control variates for estimation based on reversible Markov chain Monte Carlo samplers , 2012 .
[60] Simple implementation of Langevin dynamics neglecting detailed balance condition , 2013 .
[61] K. Hukushima,et al. An irreversible Markov-chain Monte Carlo method with skew detailed balance conditions , 2013 .
[62] Bernard Helffer,et al. Spectral Theory and its Applications , 2013 .
[63] Christof Schütte,et al. Metastability and Markov State Models in Molecular Dynamics Modeling, Analysis , 2016 .
[64] G. Pavliotis,et al. Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion , 2012, 1212.0876.
[65] Tony Lelievre,et al. Two mathematical tools to analyze metastable stochastic processes , 2012, 1201.3775.
[66] Sheng-Jhih Wu,et al. Variance reduction for diffusions , 2014, 1406.4657.
[67] T. Eisner,et al. Ergodic Theorems , 2019, Probability.
[68] K. Spiliopoulos,et al. Variance reduction for irreversible Langevin samplers and diffusion on graphs , 2014, 1410.0255.
[69] C. Hwang,et al. Attaining the Optimal Gaussian Diffusion Acceleration , 2014 .
[70] G. Pavliotis. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations , 2014 .
[71] Guillaume Hennequin,et al. Fast Sampling-Based Inference in Balanced Neuronal Networks , 2014, NIPS.
[72] Masayuki Ohzeki,et al. Langevin dynamics neglecting detailed balance condition. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[73] Tianqi Chen,et al. A Complete Recipe for Stochastic Gradient MCMC , 2015, NIPS.
[74] K. Spiliopoulos,et al. Irreversible Langevin samplers and variance reduction: a large deviations approach , 2014, 1404.0105.
[75] Joris Bierkens,et al. Non-reversible Metropolis-Hastings , 2014, Stat. Comput..