Illumination and device invariant image stitching

We address the problem of compensating color differences in image stitching. We explicitly color correct input images before image stitching by leveraging sparse correspondences. Our approach is twofold. First, for each geometric correspondence, we locally collect and process color information to be robust against low accuracy in geometric correspondences. Second, for all collected colors, we fit a global model that compensates complex color changes. Despite complex cases between input images (changes of illumination condition and imaging devices) qualitative experiments show good stitching of our method compared to recent methods in the literature.

[1]  Frédo Durand,et al.  Light mixture estimation for spatially varying white balance , 2008, ACM Trans. Graph..

[2]  Chi-Keung Tang,et al.  Image registration with global and local luminance alignment , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  Chi-Keung Tang,et al.  Local color transfer via probabilistic segmentation by expectation-maximization , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  David Salesin,et al.  Interactive digital photomontage , 2004, ACM Trans. Graph..

[5]  Alain Trémeau,et al.  Optimization of Sparse Color Correspondences for Color Mapping , 2012, Color Imaging Conference.

[7]  Gui Yun Tian,et al.  Colour correction for panoramic imaging , 2002, Proceedings Sixth International Conference on Information Visualisation.

[8]  Ross Cutler,et al.  Practical calibrations for a real-time digital omnidirectional camera , 2001 .

[9]  Wei Xu,et al.  Performance evaluation of color correction approaches for automatic multi-view image and video stitching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Erik Reinhard,et al.  Color Transfer between Images , 2001, IEEE Computer Graphics and Applications.

[11]  Kenji Yamamoto,et al.  Color correction for multi-view video using energy minimization of view networks , 2008, Int. J. Autom. Comput..

[12]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[13]  Erik Reinhard,et al.  Progressive color transfer for images of arbitrary dynamic range , 2011, Comput. Graph..

[14]  Edward H. Adelson,et al.  A multiresolution spline with application to image mosaics , 1983, TOGS.

[15]  François Pitié,et al.  Automated colour grading using colour distribution transfer , 2007, Comput. Vis. Image Underst..

[16]  Colin Doutre,et al.  Color Correction Preprocessing for Multiview Video Coding , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  Matthew A. Brown,et al.  Picking the best DAISY , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Richard Szeliski,et al.  Eliminating ghosting and exposure artifacts in image mosaics , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[19]  Heiko Hirschmüller,et al.  Evaluation of Cost Functions for Stereo Matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Erik Reinhard,et al.  A Survey of Color Mapping and its Applications , 2014, Eurographics.

[21]  Trevor Darrell,et al.  Learning object color models from multi-view constraints , 2011, CVPR 2011.

[22]  Qi Wang,et al.  A Robust Algorithm for Color Correction between Two Stereo Images , 2009, ACCV.

[23]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[24]  Stephen Lin,et al.  A New In-Camera Imaging Model for Color Computer Vision and Its Application , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Harvey J. Motulsky,et al.  Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate , 2006, BMC Bioinformatics.

[26]  Miguel Oliveira,et al.  Unsupervised local color correction for coarsely registered images , 2011, CVPR 2011.

[27]  Sabine Süsstrunk,et al.  Mapping colour in image stitching applications , 2004, J. Vis. Commun. Image Represent..

[28]  Marc Pollefeys,et al.  Robust Radiometric Calibration and Vignetting Correction , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Yacov Hel-Or,et al.  Piecewise-consistent color mappings of images acquired under various conditions , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[30]  Dani Lischinski,et al.  Non-rigid dense correspondence with applications for image enhancement , 2011, ACM Trans. Graph..

[31]  Alain Trémeau,et al.  Approximate Cross Channel Color Mapping from Sparse Color Correspondences , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[32]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[33]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[34]  Julien Rabin,et al.  Removing Artefacts From Color and Contrast Modifications , 2011, IEEE Transactions on Image Processing.

[35]  Jun Hu,et al.  Exposure Stacks of Live Scenes with Hand-Held Cameras , 2012, ECCV.