Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models

Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To overcome these issues, we propose two new dimensionality reduction methods that use minimum and maximum information models. These methods are information theoretic extensions of STC that can be used with non-Gaussian stimulus distributions to find relevant linear subspaces of arbitrary dimensionality. We compare these new methods to the conventional methods in two ways: with biologically-inspired simulated neurons responding to natural images and with recordings from macaque retinal and thalamic cells responding to naturalistic time-varying stimuli. With non-Gaussian stimuli, the minimum and maximum information methods significantly outperform STC in all cases, whereas MID performs best in the regime of low dimensional feature spaces.

[1]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[2]  J. Touryan,et al.  Isolation of Relevant Visual Features from Random Stimuli for Cortical Complex Cells , 2002, The Journal of Neuroscience.

[3]  D. Macleod,et al.  Optimal nonlinear codes for the perception of natural colours , 2001, Network.

[4]  Naftali Tishby,et al.  The minimum information principle and its application to neural code analysis , 2009, Proceedings of the National Academy of Sciences.

[5]  A. Fairhall,et al.  Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex , 2007, PLoS biology.

[6]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[7]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[8]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[9]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[10]  Feng Qi Han,et al.  Cortical Sensitivity to Visual Features in Natural Scenes , 2005, PLoS biology.

[11]  Tatyana O. Sharpee,et al.  Minimal Models of Multidimensional Computations , 2011, PLoS Comput. Biol..

[12]  John Nerbonne Proceedings of the Conference on Natural Language Learning , 2001, ACL 2001.

[13]  Lawrence C. Sincich,et al.  Preserving Information in Neural Transmission , 2009, The Journal of Neuroscience.

[14]  A. Fairhall,et al.  Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope , 2010, Proceedings of the National Academy of Sciences.

[15]  Eero P. Simoncelli,et al.  Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. , 2006, Journal of vision.

[16]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  B. Cumming,et al.  Suppressive Mechanisms in Monkey V1 Help to Solve the Stereo Correspondence Problem , 2011, The Journal of Neuroscience.

[18]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[19]  Lawrence C. Sincich,et al.  Transmission of Spike Trains at the Retinogeniculate Synapse , 2007, The Journal of Neuroscience.

[20]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[21]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[22]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[23]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[24]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[25]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[26]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[27]  C. Atencio,et al.  Cooperative Nonlinearities in Auditory Cortical Neurons , 2008, Neuron.

[28]  Michael J. Berry,et al.  Selectivity for multiple stimulus features in retinal ganglion cells. , 2006, Journal of neurophysiology.

[29]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[30]  W. Bialek,et al.  Features and dimensions: Motion estimation in fly vision , 2005, q-bio/0505003.

[31]  Eero P. Simoncelli,et al.  Characterizing Neural Gain Control using Spike-triggered Covariance , 2001, NIPS.

[32]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[33]  Feng Qi Han,et al.  Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex (V1) , 2007, Proceedings of the National Academy of Sciences.

[34]  E J Chichilnisky,et al.  Cone inputs to simple and complex cells in V1 of awake macaque. , 2007, Journal of neurophysiology.

[35]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[36]  Ryan J. Rowekamp,et al.  Analyzing multicomponent receptive fields from neural responses to natural stimuli , 2011, Network.

[37]  Rob Malouf,et al.  A Comparison of Algorithms for Maximum Entropy Parameter Estimation , 2002, CoNLL.

[38]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[39]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[40]  J. Touryan,et al.  Spatial Structure of Complex Cell Receptive Fields Measured with Natural Images , 2005, Neuron.

[41]  John B. Troy,et al.  Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells , 2010, PLoS Comput. Biol..

[42]  Michael S. Lewicki,et al.  Emergence of complex cell properties by learning to generalize in natural scenes , 2009, Nature.

[43]  T. Albright,et al.  Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1. , 2005, Journal of neurophysiology.

[44]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[45]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[46]  Aurel A. Lazar,et al.  System identification of Drosophila olfactory sensory neurons , 2011, Journal of Computational Neuroscience.

[47]  L. Goddard Information Theory , 1962, Nature.

[48]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[49]  V. Hateren,et al.  Processing of natural time series of intensities by the visual system of the blowfly , 1997, Vision Research.

[50]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[51]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.