Unmanned Ground Vehicle Navigation Using Aerial Ladar Data

In this paper, we investigate the use of overhead high-resolution three-dimensional (3D) data for enhancing the performances of an unmanned ground vehicle (UGV) in vegetated terrains. Data were collected using an airborne laser and provided prior to the robot mission. Through extensive and exhaustive field testing, we demonstrate the significance of such data in two areas: robot localization and global path planning. Absolute localization is achieved by registering 3D local ground ladar data with the global 3D aerial data. The same data are used to compute traversability maps that are used by the path planner. Vegetation is filtered both in the ground data and in the aerial data in order to recover the load bearing surface.

[1]  Karl Murphy,et al.  Autonomous Mobility for the Demo III Experimental Unmanned Vehicles , 2002 .

[2]  Jake K. Aggarwal,et al.  Position estimation for an autonomous mobile robot in an outdoor environment , 1992, IEEE Trans. Robotics Autom..

[3]  Andrew E. Johnson,et al.  Spin-Images: A Representation for 3-D Surface Matching , 1997 .

[4]  Steven Dubowsky,et al.  Experimental Study of High-speed Rough-terrain Mobile Robot Models for Reactive Behaviors , 2002, ISER.

[5]  K. Kraus,et al.  Determination of terrain models in wooded areas with airborne laser scanner data , 1998 .

[6]  Dirk Langer,et al.  Imaging Ladar for 3-D Surveying and CAD Modeling of Real-World Environments , 2000, Int. J. Robotics Res..

[7]  Larry S. Davis,et al.  Computational ground and airborne localization over rough terrain , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Reid G. Simmons,et al.  Recent progress in local and global traversability for planetary rovers , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Stephen Balakirsky,et al.  World modeling and behavior generation for autonomous ground vehicle , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Roberto Manduchi,et al.  Ladar-Based Discrimination of Grass from Obstacles for Autonomous Navigation , 2000, ISER.

[11]  Andrew E. Johnson,et al.  Surface landmark selection and matching in natural terrain , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[12]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[13]  Martial Hebert,et al.  Experimental Results in Using Aerial LADAR Data for Mobile Robot Navigation , 2003, FSR.

[14]  Eric Krotkov,et al.  Outdoor Visual Position Estimation for Planetary Rovers , 2000, Auton. Robots.

[15]  David Mumford,et al.  Statistics of range images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[16]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[17]  Wolfgang Eckstein,et al.  Extracting objects from digital terrain models , 1995, Optics & Photonics.

[18]  William B. Thompson,et al.  Localizing in unstructured environments: dealing with the errors , 1994, IEEE Trans. Robotics Autom..

[19]  Takeo Kanade,et al.  A three-dimensional color terrain modeling system for small autonomous helicopters , 2002 .

[20]  Alonzo Kelly,et al.  Real-Time, Multi-Perspective Perception for Unmanned Ground Vehicles , 2003 .

[21]  Gérard G. Medioni,et al.  Map-based localization using the panoramic horizon , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[22]  Martial Hebert,et al.  Terrain Classification Techniques From Ladar Data For Autonomous Navigation , 2002 .

[23]  R Zander,et al.  ニュージランドのLauder(45°S)上空における,対流圏気柱内HCN,CO,C2H6及びC2H2に関する多年赤外線日射分光測定 , 2002 .

[24]  James S. Albus,et al.  4D/RCS Version 2.0: A Reference Model Architecture for Unmanned Vehicle Systems , 2002 .

[25]  T. Kubota,et al.  Path planning for newly developed microrover , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[26]  Anthony Stentz,et al.  Learning Predictions of the Load-Bearing Surface for Autonomous Rough-Terrain Navigation in Vegetation , 2003, FSR.

[27]  Steven Dubowsky,et al.  On-line terrain parameter estimation for planetary rovers , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[28]  Dinesh K. Pai,et al.  Multiresolution rough terrain motion planning , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[29]  Thierry Siméon Motion planning for a non-holonomic mobile robot on 3-dimensional terrains , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[30]  Clark F. Olson,et al.  Localization of Mars rovers using descent and surface‐based image data , 2002 .

[31]  Larry H. Matthies,et al.  Foliage discrimination using a rotating ladar , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[32]  Martial Hebert,et al.  A new approach to 3-D terrain mapping , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[33]  P. Lohmann,et al.  APPROACHES TO THE FILTERING OF LASER SCANNER DATA , 2000 .

[34]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: existing systems and firms and other resources , 1999 .

[35]  G. Sithole FILTERING OF LASER ALTIMETRY DATA USING A SLOPE ADAPTIVE FILTER , 2001 .

[36]  Larry S. Davis,et al.  Ground and airborne localization over rough terrain using random environmental range-measurements , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[37]  Martial Hebert,et al.  3D Rover Localization in Airborne Ladar Data , 2002, ISER.

[38]  Christian Laugier,et al.  Motion planning of autonomous off-road vehicles under physical interaction constraints , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[39]  Thierry Siméon,et al.  A practical motion planner for all-terrain mobile robots , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[40]  H. Maas,et al.  THE USE OF ANISOTROPIC HEIGHT TEXTURE MEASURES FOR THE SEGMENTATION OF AIRBORNE LASER SCANNER DATA , 2000 .

[41]  Moëz Cherif Kinodynamic motion planning for all-terrain wheeled vehicles , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[42]  Alonzo Kelly,et al.  Integrated Air/Ground Vehicle System for Semi-Autonomous Off-Road Navigation , 2002 .

[43]  James S. Albus,et al.  4DRCS :: a reference model architecture for unmanned vehicle systems version 2.0 , 2002 .

[44]  Martial Hebert,et al.  Quality assessment of traversability maps from aerial LIDAR data for an unmanned ground vehicle , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[45]  P. Reiss,et al.  Laser scanning—surveying and mapping agencies are using a new technique for the derivation of digital terrain models , 1999 .