Uplink-downlink duality for integer-forcing

Consider a MIMO uplink channel with channel matrix H and a MIMO downlink channel with channel matrix Hτ. It is well-known that any rate tuple that is achievable on the uplink is also achievable on the downlink under the same total power constraint, i.e., there is an uplink-downlink duality relationship. In this paper, we consider the integer-forcing strategy, in which users steer the channel towards an integer-valued effective channel matrix so that the receiver(s) can decode integer-linear combinations of the transmitted codewords. Recent efforts have demonstrated the benefits of this strategy for uplink, downlink, and interference alignment scenarios. Here, we establish that uplink-downlink duality holds for integer-forcing. Specifically, in the uplink, L transmitters communicate over channel matrix H to an L-antenna receiver with target integer matrix A. In the downlink, an L-antenna transmitter communicates over channel matrix Hτ to L single-antenna receivers with target integer matrix Aτ. We show that any computation rate tuple that is achievable in the uplink is achievable for the same total power in the downlink and vice versa.

[1]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[2]  Amir K. Khandani,et al.  LLL Reduction Achieves the Receive Diversity in MIMO Decoding , 2006, IEEE Transactions on Information Theory.

[3]  Wei Yu,et al.  Sum-capacity computation for the Gaussian vector broadcast channel via dual decomposition , 2006, IEEE Transactions on Information Theory.

[4]  Wei Yu,et al.  An uplink-downlink duality for cloud radio access network , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[5]  Uri Erez,et al.  A Simple Proof for the Existence of “Good” Pairs of Nested Lattices , 2012, IEEE Transactions on Information Theory.

[6]  Yu-Chih Huang,et al.  Lattices Over Eisenstein Integers for Compute-and-Forward , 2014, IEEE Transactions on Information Theory.

[7]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[8]  Andrea J. Goldsmith,et al.  On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming , 2006, IEEE Journal on Selected Areas in Communications.

[9]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[10]  Sae-Young Chung,et al.  Sphere-bound-achieving coset codes and multilevel coset codes , 2000, IEEE Trans. Inf. Theory.

[11]  Michael Gastpar,et al.  Compute-and-Forward: Harnessing Interference Through Structured Codes , 2009, IEEE Transactions on Information Theory.

[12]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[13]  Wenbo He,et al.  Integer-forcing source coding: Successive cancellation and source-channel duality , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[14]  Uri Erez,et al.  The Approximate Sum Capacity of the Symmetric Gaussian $K$ -User Interference Channel , 2012, IEEE Transactions on Information Theory.

[15]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.

[16]  Frank R. Kschischang,et al.  An Algebraic Approach to Physical-Layer Network Coding , 2010, IEEE Transactions on Information Theory.

[17]  Joakim Jaldén,et al.  DMT Optimality of LR-Aided Linear Decoders for a General Class of Channels, Lattice Designs, and System Models , 2009, IEEE Transactions on Information Theory.

[18]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[19]  Reinaldo A. Valenzuela,et al.  V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel , 1998, 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167).

[20]  Emanuele Viterbo,et al.  Integer-Forcing MIMO Linear Receivers Based on Lattice Reduction , 2012, IEEE Transactions on Wireless Communications.

[21]  T. Guess,et al.  Optimum decision feedback multiuser equalization with successive decoding achieves the total capacity of the Gaussian multiple-access channel , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[22]  Bernard Fino,et al.  Multiuser detection: , 1999, Ann. des Télécommunications.

[23]  Giuseppe Caire,et al.  Expanding the Compute-and-Forward Framework: Unequal Powers, Signal Levels, and Multiple Linear Combinations , 2015, IEEE Transactions on Information Theory.

[24]  Giuseppe Caire,et al.  Reverse compute and forward: A low-complexity architecture for downlink distributed antenna systems , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[25]  Steven D. Galbraith,et al.  Mathematics of Public Key Cryptography: Lattice basis reduction , 2012 .

[26]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[27]  Amir K. Khandani,et al.  Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction , 2006, IEEE Transactions on Information Theory.

[28]  L. Goddard Information Theory , 1962, Nature.

[29]  Syed Ali Jafar,et al.  A Distributed Numerical Approach to Interference Alignment and Applications to Wireless Interference Networks , 2011, IEEE Transactions on Information Theory.

[30]  Sergio Verdú,et al.  Linear multiuser detectors for synchronous code-division multiple-access channels , 1989, IEEE Trans. Inf. Theory.

[31]  Rüdiger L. Urbanke,et al.  A rate-splitting approach to the Gaussian multiple-access channel , 1996, IEEE Trans. Inf. Theory.

[32]  Giuseppe Caire,et al.  Compute-and-Forward Strategies for Cooperative Distributed Antenna Systems , 2012, IEEE Transactions on Information Theory.

[33]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[34]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[35]  R. Plemmons M-matrix characterizations.I—nonsingular M-matrices , 1977 .

[36]  Uri Erez,et al.  Universal outage behavior of randomly precoded integer forcing Over MIMO channels , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[37]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[38]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[39]  Uri Erez,et al.  Successive integer-forcing and its sum-rate optimality , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[40]  Upamanyu Madhow,et al.  MMSE interference suppression for direct-sequence spread-spectrum CDMA , 1994, IEEE Trans. Commun..

[41]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[42]  Michael Gastpar,et al.  Integer-forcing linear receivers , 2010, 2010 IEEE International Symposium on Information Theory.

[43]  Meir Feder,et al.  On lattice quantization noise , 1996, IEEE Trans. Inf. Theory.

[44]  Uri Erez,et al.  Integer-Forcing source coding , 2013, 2014 IEEE International Symposium on Information Theory.

[45]  Shafi Goldwasser,et al.  Complexity of lattice problems - a cryptographic perspective , 2002, The Kluwer international series in engineering and computer science.

[46]  Uri Erez,et al.  Precoded Integer-Forcing Equalization Universally Achieves the MIMO Capacity up to a Constant Gap , 2013, ArXiv.

[47]  Dirk Wübben,et al.  Lattice Reduction , 2011, IEEE Signal Processing Magazine.

[48]  Yuval Kochman,et al.  Lattice Coding for Signals and Networks: Side-information problems , 2014 .

[49]  Andrea J. Goldsmith,et al.  Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels , 2003, IEEE Trans. Inf. Theory.

[50]  Robert F. H. Fischer,et al.  Lattice-reduction-aided broadcast precoding , 2004, IEEE Transactions on Communications.

[51]  Gregory W. Wornell,et al.  Lattice-reduction-aided detectors for MIMO communication systems , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[52]  Simon Litsyn,et al.  Lattices which are good for (almost) everything , 2005, IEEE Transactions on Information Theory.

[53]  Shlomo Shamai,et al.  Capacity and lattice strategies for canceling known interference , 2005, IEEE Transactions on Information Theory.

[54]  Uri Erez,et al.  Precoded integer-forcing universally achieves the MIMO capacity to within a constant gap , 2013, 2013 IEEE Information Theory Workshop (ITW).

[55]  Steven Galbraith Lattice Basis Reduction , 2011, Encyclopedia of Cryptography and Security.

[56]  Wei Yu,et al.  Sum capacity of Gaussian vector broadcast channels , 2004, IEEE Transactions on Information Theory.

[57]  Wenbo He,et al.  Integer-forcing interference alignment: Iterative optimization via aligned lattice reduction , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[58]  Wai Ho Mow,et al.  Complex Lattice Reduction Algorithm for Low-Complexity Full-Diversity MIMO Detection , 2009, IEEE Transactions on Signal Processing.

[59]  Giuseppe Caire,et al.  Integer-forcing interference alignment , 2013, 2013 IEEE International Symposium on Information Theory.

[60]  Ami Wiesel,et al.  Zero-Forcing Precoding and Generalized Inverses , 2008, IEEE Transactions on Signal Processing.

[61]  David Tse,et al.  Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality , 2003, IEEE Trans. Inf. Theory.