Theoretical Computer Science: Computational Complexity

How much time, space and/or hardware resource does require an algorithm? Such questions lead to surprising results: conceptual simplicity does not always go along with efficiency. A lot of quite natural questions remain open, e.g., the famous P \(=\) NP problem raised in 1970. The so elementary model of finite automata, adequately tailored to diverse data structures, proves to be a flexible and powerful tool in the subject whereas quantum computing opens astonishing perspectives. An elegant tool for proofs of lower bounds for time/space complexity is a totally different notion of complexity: Kolmogorov complexity which measures the information contents.

[1]  Elham Kashefi,et al.  Computational Depth Complexity of Measurement-Based Quantum Computation , 2009, TQC.

[2]  Ernst L. Leiss,et al.  On Equations for Regular Languages, Finite Automata, and Sequential Networks , 1980, Theor. Comput. Sci..

[3]  Masanao Ozawa Halting of Quantum Turing Machines , 2002, UMC.

[4]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .

[5]  Michael Benedikt,et al.  Regular tree languages definable in FO and in FOmod , 2009, TOCL.

[6]  Paul M. B. Vitányi,et al.  Clustering by compression , 2003, IEEE Transactions on Information Theory.

[7]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[8]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[9]  Stephen A. Cook,et al.  Time Bounded Random Access Machines , 1973, J. Comput. Syst. Sci..

[10]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Ronald de Wolf,et al.  Algorithmic Clustering of Music Based on String Compression , 2004, Computer Music Journal.

[12]  Jean Berstel,et al.  Recognizable Formal Power Series on Trees , 1982, Theor. Comput. Sci..

[13]  C. Parsons On a Number Theoretic Choice Schema and its Relation to Induction , 1970 .

[14]  Rémi Gilleron,et al.  PAC Learning under Helpful Distributions , 2001, RAIRO Theor. Informatics Appl..

[15]  Manuel Blum,et al.  A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.

[16]  W. G. Horner,et al.  A new method of solving numerical equations of all orders, by continuous approximation , 1815 .

[17]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[18]  Stephen A. Cook,et al.  The importance of the P versus NP question , 2003, JACM.

[19]  Azaria Paz,et al.  Introduction to Probabilistic Automata , 1971 .

[20]  John E. Savage,et al.  Models of computation - exploring the power of computing , 1998 .

[21]  Richard P. Brent,et al.  Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.

[22]  Andrzej Ehrenfeucht,et al.  Complexity Measures for Regular Expressions , 1976, J. Comput. Syst. Sci..

[23]  Pierre Dupont,et al.  Links between probabilistic automata and hidden Markov models: probability distributions, learning models and induction algorithms , 2005, Pattern Recognit..

[24]  Thomas Colcombet,et al.  Tree-Walking Automata Do Not Recognize All Regular Languages , 2008, SIAM J. Comput..

[25]  J. Berstel,et al.  Theory of codes , 1985 .

[26]  Kousha Etessami,et al.  Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations , 2005, JACM.

[27]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[28]  Wolfgang J. Paul,et al.  Kolmogorov complexity and lower bounds , 1979, FCT.

[29]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[30]  Thomas Colcombet,et al.  Tree-walking automata cannot be determinized , 2006, Theor. Comput. Sci..

[31]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[32]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[33]  Paul M. B. Vitányi,et al.  ‘Ideal learning’ of natural language: Positive results about learning from positive evidence , 2007 .

[34]  Timothy V. Griffiths The unsolvability of the Equivalence Problem for Λ-Free nondeterministic generalized machines , 1968, JACM.

[35]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[36]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[37]  Nick Chater,et al.  Identification of probabilities , 2007, Journal of mathematical psychology.

[38]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[39]  O. Eichwald,et al.  Ion swarm data for electrical discharge modeling in air and flue gas mixtures , 2003 .

[40]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[41]  Harry Buhrman,et al.  Quantum verification of matrix products , 2004, SODA '06.

[42]  Christian Choffrut,et al.  Sur les traductions reconnaissables , 1978, RAIRO Theor. Informatics Appl..

[43]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[44]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[45]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[46]  Neil D. Jones,et al.  Computability and complexity - from a programming perspective , 1997, Foundations of computing series.

[47]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[48]  José L. Balcázar,et al.  Structural Complexity II , 2012, EATCS.

[49]  Marcel Paul Schützenberger,et al.  On a Question of Eggan , 1966, Inf. Control..

[50]  Richard Phillips Feynman Quantum-Mechanical Computers , 1984 .

[51]  Mehdi Mhalla,et al.  Quantum Query Complexity of Some Graph Problems , 2006, SIAM J. Comput..

[52]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[53]  Yuri Gurevich,et al.  On Kolmogorov Machines and Related Issues , 2017, Current Trends in Theoretical Computer Science.

[54]  Gérard Berry,et al.  From Regular Expressions to Deterministic Automata , 1986, Theor. Comput. Sci..

[55]  Stephen A. Cook,et al.  An overview of computational complexity , 1983, CACM.

[56]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[57]  V. Glushkov THE ABSTRACT THEORY OF AUTOMATA , 1961 .

[58]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[59]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[60]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[61]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[62]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[63]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[64]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications, Third Edition , 1997, Texts in Computer Science.

[65]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[66]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[67]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[68]  Hector Zenil Randomness Through Computation: Some Answers, More Questions , 2011 .

[69]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[70]  Maxime Crochemore,et al.  Automata for Matching Patterns , 1997, Handbook of Formal Languages.

[71]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[72]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[73]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[74]  Endre Szemerédi,et al.  On determinism versus non-determinism and related problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[75]  Marie Ferbus-Zanda,et al.  Is Randomness native to Computer Science? Ten Years Later , 2012 .

[76]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[77]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[78]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[79]  José L. Balcázar,et al.  Some results about Logspace complexity measures , 1984, Bull. EATCS.

[80]  Franz Baader Description Logics , 2009, Reasoning Web.

[81]  V. Pan METHODS OF COMPUTING VALUES OF POLYNOMIALS , 1966 .

[82]  Peter van Emde Boas,et al.  On tape versus core an application of space efficient perfect hash functions to the invariance of space , 1984, STOC '84.

[83]  Jean-Yves Marion Actual Arithmetic and Feasibility , 2001, CSL.

[84]  Charles Parsons Notice of a meeting of the Association for Symbolic Logic , 1971 .

[85]  Karel Culik,et al.  The Equivalence of Finite Valued Transducers (on HDTOL Languages) is Decidable , 1986, MFCS.

[86]  Simon Perdrix,et al.  Classically controlled quantum computation , 2004, Mathematical Structures in Computer Science.

[87]  Kosaburo Hashiguchi,et al.  Algorithms for Determining Relative Star height and Star Height , 1988, IFIP Congress.

[88]  Derick Wood,et al.  One-Unambiguous Regular Languages , 1998, Inf. Comput..

[89]  Algirdas Avizienis,et al.  Signed-Digit Numbe Representations for Fast Parallel Arithmetic , 1961, IRE Trans. Electron. Comput..

[90]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[91]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[92]  L. Eggan Transition graphs and the star-height of regular events. , 1963 .

[93]  Bin Ma,et al.  The similarity metric , 2001, IEEE Transactions on Information Theory.

[94]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[95]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[96]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[97]  Thomas A. Henzinger,et al.  Antichains: A New Algorithm for Checking Universality of Finite Automata , 2006, CAV.

[98]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[99]  Damien Pous,et al.  Hacking nondeterminism with induction and coinduction , 2015, Commun. ACM.

[100]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[101]  Anne Brüggemann-Klein Regular Expressions into Finite Automata , 1993, Theor. Comput. Sci..

[102]  Robert McNaughton,et al.  Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..

[103]  Géraud Sénizergues,et al.  L(A)=L(B)? A simplified decidability proof , 2002, Theor. Comput. Sci..

[104]  Dominique Perrin,et al.  Codes and Automata , 2009, Encyclopedia of mathematics and its applications.

[105]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[106]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[107]  Donald E. Knuth,et al.  Big Omicron and big Omega and big Theta , 1976, SIGA.

[108]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[109]  Martin Fürer,et al.  Faster integer multiplication , 2007, STOC '07.

[110]  Oded Goldreich,et al.  Computational complexity: a conceptual perspective , 2008, SIGA.

[111]  Simon Perdrix STATE TRANSFER INSTEAD OF TELEPORTATION IN MEASUREMENT-BASED QUANTUM COMPUTATION , 2005 .

[112]  Guillem Godoy,et al.  The HOM Problem is EXPTIME-Complete , 2016, SIAM J. Comput..

[113]  Hrant.B. Marandjan Handbook of Theoretical Computer Science. Volume A: Algorithms and Complexity. Volume B: Formal Models and Semantics: Jan van Leeuwen, ed., (Elsevier, Amsterdam, Netherlands/The MIT Press, Cambridge, MA, 1990) , 1995 .

[114]  Colin de la Higuera,et al.  Grammatical Inference: Learning Automata and Grammars , 2010 .

[115]  Marie Ferbus-Zanda,et al.  Kolmogorov Complexity in perspective. Part I: Information Theory and Randomnes , 2010, ArXiv.

[116]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[117]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[118]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[119]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[120]  B. Dickinson,et al.  The complexity of analog computation , 1986 .

[121]  Charles D. Parsons,et al.  On n-quantifier induction , 1972, Journal of Symbolic Logic.