Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number of Clusters and Submatrices

We consider two closely related problems: planted clustering and submatrix localization. In the planted clustering problem, a random graph is generated based on an underlying cluster structure of the nodes; the task is to recover these clusters given the graph. The submatrix localization problem concerns locating hidden submatrices with elevated means inside a large real-valued random matrix. Of particular interest is the setting where the number of clusters/submatrices is allowed to grow unbounded with the problem size. These formulations cover several classical models such as planted clique, planted densest subgraph, planted partition, planted coloring, and the stochastic block model, which are widely used for studying community detection, graph clustering and bi-clustering. For both problems, we show that the space of the model parameters (cluster/submatrix size, edge probabilities and the mean of the submatrices) can be partitioned into four disjoint regions corresponding to decreasing statistical and computational complexities: (1) the impossible regime, where all algorithms fail; (2) the hard regime, where the computationally expensive Maximum Likelihood Estimator (MLE) succeeds; (3) the easy regime, where the polynomial-time convexified MLE succeeds; (4) the simple regime, where a local counting/thresholding procedure succeeds. Moreover, we show that each of these algorithms provably fails in the harder regimes. Our results establish the minimax recovery limits, which are tight up to universal constants and hold even with a growing number of clusters/submatrices, and provide order-wise stronger performance guarantees for polynomial-time algorithms than previously known. Our study demonstrates the tradeoffs between statistical and computational considerations, and suggests that the minimax limits may not be achievable by polynomial-time algorithms.

[1]  Jing Lei,et al.  Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA , 2013, NIPS.

[2]  Elchanan Mossel,et al.  A Proof of the Block Model Threshold Conjecture , 2013, Combinatorica.

[3]  Bruce E. Hajek,et al.  Computational Lower Bounds for Community Detection on Random Graphs , 2014, COLT.

[4]  Yuval Peres,et al.  Finding Hidden Cliques in Linear Time with High Probability , 2010, Combinatorics, Probability and Computing.

[5]  Sujay Sanghavi,et al.  Clustering Sparse Graphs , 2012, NIPS.

[6]  Laurent Massoulié,et al.  Distributed user profiling via spectral methods , 2010, SIGMETRICS '10.

[7]  E. Arias-Castro,et al.  Community Detection in Random Networks , 2013, 1302.7099.

[8]  Elchanan Mossel,et al.  Reconstruction and estimation in the planted partition model , 2012, Probability Theory and Related Fields.

[9]  van Vu,et al.  A Simple SVD Algorithm for Finding Hidden Partitions , 2014, Combinatorics, Probability and Computing.

[10]  Santosh S. Vempala,et al.  Statistical Algorithms and a Lower Bound for Planted Clique , 2012, Electron. Colloquium Comput. Complex..

[11]  Noga Alon,et al.  Testing k-wise and almost k-wise independence , 2007, STOC '07.

[12]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Brendan P. W. Ames Guaranteed clustering and biclustering via semidefinite programming , 2012, Mathematical Programming.

[14]  Benjamin Rossman,et al.  Average-case complexity of detecting cliques , 2010 .

[15]  Cristopher Moore,et al.  Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  A. Nobel,et al.  Energy landscape for large average submatrix detection problems in Gaussian random matrices , 2012, 1211.2284.

[17]  Peter J. Bickel,et al.  Pseudo-likelihood methods for community detection in large sparse networks , 2012, 1207.2340.

[18]  Fan Chung Graham,et al.  Spectral Clustering of Graphs with General Degrees in the Extended Planted Partition Model , 2012, COLT.

[19]  B. Nadler,et al.  DO SEMIDEFINITE RELAXATIONS SOLVE SPARSE PCA UP TO THE INFORMATION LIMIT , 2013, 1306.3690.

[20]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[21]  Ali Jalali,et al.  Clustering using Max-norm Constrained Optimization , 2012, ICML.

[22]  Stephen A. Vavasis,et al.  Convex optimization for the planted k-disjoint-clique problem , 2010, Math. Program..

[23]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[24]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[25]  Ari Juels,et al.  Hiding Cliques for Cryptographic Security , 1998, SODA '98.

[26]  Amin Coja-Oghlan Coloring Semirandom Graphs Optimally , 2004, ICALP.

[27]  Anima Anandkumar,et al.  A tensor approach to learning mixed membership community models , 2013, J. Mach. Learn. Res..

[28]  Pascal Koiran,et al.  Hidden Cliques and the Certification of the Restricted Isometry Property , 2012, IEEE Transactions on Information Theory.

[29]  Laurent Massoulié,et al.  Reconstruction in the labeled stochastic block model , 2013, 2013 IEEE Information Theory Workshop (ITW).

[30]  Michael I. Jordan,et al.  Computational and statistical tradeoffs via convex relaxation , 2012, Proceedings of the National Academy of Sciences.

[31]  J. Vondrák,et al.  The Probabilistic Method Lecture Notes , 2009 .

[32]  Xiaodong Li,et al.  Robust and Computationally Feasible Community Detection in the Presence of Arbitrary Outlier Nodes , 2014, ArXiv.

[33]  Sivaraman Balakrishnan,et al.  Minimax Localization of Structural Information in Large Noisy Matrices , 2011, NIPS.

[34]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[35]  Anima Anandkumar,et al.  A Tensor Spectral Approach to Learning Mixed Membership Community Models , 2013, COLT.

[36]  Anthony Wirth,et al.  Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[37]  M. Wainwright,et al.  High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.

[38]  Noga Alon,et al.  Finding a large hidden clique in a random graph , 1998, SODA '98.

[39]  Richard M. Karp,et al.  Algorithms for graph partitioning on the planted partition model , 2001, Random Struct. Algorithms.

[40]  Béla Bollobás,et al.  Max Cut for Random Graphs with a Planted Partition , 2004, Combinatorics, Probability and Computing.

[41]  Bruce E. Hajek,et al.  Achieving Exact Cluster Recovery Threshold via Semidefinite Programming: Extensions , 2015, IEEE Transactions on Information Theory.

[42]  Sivaraman Balakrishnan,et al.  Noise Thresholds for Spectral Clustering , 2011, NIPS.

[43]  R. Durrett Random Graph Dynamics: References , 2006 .

[44]  Bin Yu,et al.  Spectral clustering and the high-dimensional stochastic blockmodel , 2010, 1007.1684.

[45]  D. Welsh,et al.  A Spectral Technique for Coloring Random 3-Colorable Graphs , 1994 .

[46]  L. Wasserman,et al.  Statistical and computational tradeoffs in biclustering , 2011 .

[47]  Raj Rao Nadakuditi,et al.  Graph spectra and the detectability of community structure in networks , 2012, Physical review letters.

[48]  A. Nobel,et al.  Finding large average submatrices in high dimensional data , 2009, 0905.1682.

[49]  Stephen A. Vavasis,et al.  Nuclear norm minimization for the planted clique and biclique problems , 2009, Math. Program..

[50]  Frank McSherry,et al.  Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[51]  Philippe Rigollet,et al.  Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.

[52]  Andrea Montanari,et al.  Finding Hidden Cliques of Size $$\sqrt{N/e}$$N/e in Nearly Linear Time , 2013, Found. Comput. Math..

[53]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[54]  Elchanan Mossel,et al.  Consistency Thresholds for the Planted Bisection Model , 2014, STOC.

[55]  Yudong Chen,et al.  Statistical-Computational Phase Transitions in Planted Models: The High-Dimensional Setting , 2014, ICML.

[56]  Ludek Kucera,et al.  Expected Complexity of Graph Partitioning Problems , 1995, Discret. Appl. Math..

[57]  E. Arias-Castro,et al.  Community Detection in Sparse Random Networks , 2013, 1308.2955.

[58]  Nir Ailon,et al.  Breaking the Small Cluster Barrier of Graph Clustering , 2013, ICML.

[59]  E. Candès,et al.  Detection of an anomalous cluster in a network , 2010, 1001.3209.

[60]  Babak Hassibi,et al.  Sharp performance bounds for graph clustering via convex optimization , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[61]  E. Arias-Castro,et al.  Community detection in dense random networks , 2014 .

[62]  Yudong Chen,et al.  Clustering Partially Observed Graphs via Convex Optimization , 2011, ICML.

[63]  Robert Krauthgamer,et al.  How hard is it to approximate the best Nash equilibrium? , 2009, SODA.

[64]  Alexandre Proutière,et al.  Community Detection via Random and Adaptive Sampling , 2014, COLT.

[65]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[66]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[67]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[68]  Yu. I. Ingster,et al.  Detection of a sparse submatrix of a high-dimensional noisy matrix , 2011, 1109.0898.

[69]  Claire Mathieu,et al.  Correlation clustering with noisy input , 2010, SODA '10.

[70]  Martin E. Dyer,et al.  The Solution of Some Random NP-Hard Problems in Polynomial Expected Time , 1989, J. Algorithms.

[71]  Jure Leskovec,et al.  Statistical properties of community structure in large social and information networks , 2008, WWW.

[72]  Emmanuel Abbe,et al.  Exact Recovery in the Stochastic Block Model , 2014, IEEE Transactions on Information Theory.

[73]  Richard M. Karp,et al.  Algorithms for graph partitioning on the planted partition model , 1999, Random Struct. Algorithms.

[74]  A. Nobel,et al.  On the maximal size of large-average and ANOVA-fit submatrices in a Gaussian random matrix. , 2010, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[75]  Yudong Chen,et al.  Incoherence-Optimal Matrix Completion , 2013, IEEE Transactions on Information Theory.

[76]  Emmanuel Abbe,et al.  Community detection in general stochastic block models: fundamental limits and efficient recovery algorithms , 2015, ArXiv.

[77]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[78]  Yonina C. Eldar,et al.  Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices , 2012, IEEE Transactions on Information Theory.

[79]  R. Srikant,et al.  Jointly clustering rows and columns of binary matrices: algorithms and trade-offs , 2013, SIGMETRICS '14.

[80]  Rick Durrett,et al.  Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics) , 2006 .

[81]  P. Rigollet,et al.  Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.

[82]  B. Nadler,et al.  Do Semidefinite Relaxations Really Solve Sparse PCA , 2013 .

[83]  Yihong Wu,et al.  Computational Barriers in Minimax Submatrix Detection , 2013, ArXiv.

[84]  Bruce E. Hajek,et al.  Achieving exact cluster recovery threshold via semidefinite programming , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[85]  Afonso S. Bandeira,et al.  Random Laplacian Matrices and Convex Relaxations , 2015, Found. Comput. Math..

[86]  Laurent Massoulié,et al.  Community detection thresholds and the weak Ramanujan property , 2013, STOC.

[87]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..