Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo

We present a modern solution to the multi-view photometric stereo problem (MVPS). Our work suitably exploits the image formation model in a MVPS experimental setup to recover the dense 3D reconstruction of an object from images. We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object’s surface geometry. Contrary to the previous multi-staged framework to MVPS, where the position, isodepth contours, or orientation measurements are estimated independently and then fused later, our method is simple to implement and realize. Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network. We render the MVPS images by considering the object’s surface normals for each 3D sample point along the viewing direction rather than explicitly using the density gradient in the volume space via 3D occupancy information. We optimize the proposed neural radiance field representation for the MVPS setup efficiently using a fully connected deep network to recover the 3D geometry of an object. Extensive evaluation on the DiLiGenT-MV benchmark dataset shows that our method performs better than the approaches that perform only PS or only multi-view stereo (MVS) and provides comparable results against the state-of-the-art multistage fusion methods.

[1]  Matthias Nießner,et al.  Shading-based refinement on volumetric signed distance functions , 2015, ACM Trans. Graph..

[2]  Kai Han,et al.  PS-FCN: A Flexible Learning Framework for Photometric Stereo , 2018, ECCV.

[3]  Ricardo Martin-Brualla,et al.  ShaRF: Shape-conditioned Radiance Fields from a Single View , 2021, ICML.

[4]  Wenbing Tao,et al.  PVSNet: Pixelwise Visibility-Aware Multi-View Stereo Network , 2020, ArXiv.

[5]  Jitendra Malik,et al.  Learning a Multi-View Stereo Machine , 2017, NIPS.

[6]  Hao Su,et al.  Deep Stereo Using Adaptive Thin Volume Representation With Uncertainty Awareness , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Steven M. Seitz,et al.  Photorealistic Scene Reconstruction by Voxel Coloring , 1997, International Journal of Computer Vision.

[8]  Long Quan,et al.  Recurrent MVSNet for High-Resolution Multi-View Stereo Depth Inference , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Kiyoharu Aizawa,et al.  Photometric Stereo Using Sparse Bayesian Regression for General Diffuse Surfaces , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Ping Tan,et al.  A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[12]  Anoop Cherian,et al.  Scalable Dense Non-rigid Structure-from-Motion: A Grassmannian Perspective , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Venu Madhav Govindu,et al.  Photometric refinement of depth maps for multi-albedo objects , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Szymon Rusinkiewicz,et al.  Spacetime stereo: a unifying framework for depth from triangulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Konrad Schindler,et al.  Massively Parallel Multiview Stereopsis by Surface Normal Diffusion , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[16]  David J. Kriegman,et al.  Reflections on the generalized bas-relief ambiguity , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Luc Van Gool,et al.  Uncalibrated Neural Inverse Rendering for Photometric Stereo of General Surfaces , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Yann LeCun,et al.  Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches , 2015, J. Mach. Learn. Res..

[19]  Lei Zhou,et al.  Very Large-Scale Global SfM by Distributed Motion Averaging , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Yasuyuki Matsushita,et al.  What Is Learned in Deep Uncalibrated Photometric Stereo? , 2020, ECCV.

[21]  Silvano Galliani,et al.  PatchmatchNet: Learned Multi-View Patchmatch Stereo , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Steven M. Seitz,et al.  Shape and spatially-varying BRDFs from photometric stereo , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[23]  Takeshi Shakunaga,et al.  Analysis of photometric factors based on photometric linearization. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  Long Quan,et al.  Distributed Very Large Scale Bundle Adjustment by Global Camera Consensus , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[25]  Yasuyuki Matsushita,et al.  Deep Photometric Stereo for Non-Lambertian Surfaces , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Wenbing Tao,et al.  Multi-Scale Geometric Consistency Guided Multi-View Stereo , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Jason Geng,et al.  Structured-light 3D surface imaging: a tutorial , 2011 .

[28]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[29]  Stephen Lin,et al.  DPSNet: End-to-end Deep Plane Sweep Stereo , 2019, ICLR.

[30]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[31]  Jan-Michael Frahm,et al.  Structure-from-Motion Revisited , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Zhe Wu,et al.  A Benchmark Dataset and Evaluation for Non-Lambertian and Uncalibrated Photometric Stereo , 2019, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Suryansh Kumar,et al.  Jumping Manifolds: Geometry Aware Dense Non-Rigid Structure From Motion , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Anders Bjorholm Dahl,et al.  Large-Scale Data for Multiple-View Stereopsis , 2016, International Journal of Computer Vision.

[35]  Yuxin Hou,et al.  Multi-View Stereo by Temporal Nonparametric Fusion , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[36]  Zehao Yu,et al.  Fast-MVSNet: Sparse-to-Dense Multi-View Stereo With Learned Propagation and Gauss-Newton Refinement , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Carsten Rother,et al.  PatchMatch Stereo - Stereo Matching with Slanted Support Windows , 2011, BMVC.

[39]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[40]  Li Zhang,et al.  Rapid shape acquisition using color structured light and multi-pass dynamic programming , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[41]  Ikeuchi,et al.  Constructing a Depth Map from Images , 1983 .

[42]  Matthias Nießner,et al.  State of the Art on 3D Reconstruction with RGB‐D Cameras , 2018, Comput. Graph. Forum.

[43]  Yasuyuki Matsushita,et al.  Deep Photometric Stereo Network , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[44]  Carl Olsson,et al.  Combining Depth Fusion and Photometric Stereo for Fine-Detailed 3D Models , 2019, SCIA.

[45]  Hongdong Li,et al.  Dense Depth Estimation of a Complex Dynamic Scene without Explicit 3D Motion Estimation , 2019, 1902.03791.

[46]  Matthias Nießner,et al.  Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[47]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[48]  Yasuyuki Matsushita,et al.  Self-Calibrating Deep Photometric Stereo Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[50]  Aswin C. Sankaranarayanan,et al.  Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Cristian Sminchisescu,et al.  A Real-Time Online Learning Framework for Joint 3D Reconstruction and Semantic Segmentation of Indoor Scenes , 2021, IEEE Robotics and Automation Letters.

[52]  Yasuyuki Matsushita,et al.  Robust Multiview Photometric Stereo Using Planar Mesh Parameterization , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Katsushi Ikeuchi,et al.  Determining a Depth Map Using a Dual Photometric Stereo , 1987 .

[54]  Berthold K. P. Horn,et al.  Determining Shape and Reflectance Using Multiple Images , 1978 .

[55]  Tai-Pang Wu,et al.  Photometric Stereo via Expectation Maximization , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Satoshi Ikehata,et al.  CNN-PS: CNN-based Photometric Stereo for General Non-Convex Surfaces , 2018, ECCV.

[57]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[58]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[59]  Luc Van Gool,et al.  Progressive Prioritized Multi-view Stereo , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Aly A. Farag,et al.  Integrating shape from shading and range data using neural networks , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[61]  Xiangqian Jiang,et al.  Complex Surface Reconstruction Based on Fusion of Surface Normals and Sparse Depth Measurement , 2021, IEEE Transactions on Instrumentation and Measurement.

[62]  Hongdong Li,et al.  Monocular Dense 3D Reconstruction of a Complex Dynamic Scene from Two Perspective Frames , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[63]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[64]  Jiansheng Chen,et al.  MVSCRF: Learning Multi-View Stereo With Conditional Random Fields , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[65]  David J. Kriegman,et al.  The Bas-Relief Ambiguity , 2004, International Journal of Computer Vision.

[66]  Kiyoharu Aizawa,et al.  Photometric Stereo Using Constrained Bivariate Regression for General Isotropic Surfaces , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[68]  Katsushi Ikeuchi,et al.  Median Photometric Stereo as Applied to the Segonko Tumulus and Museum Objects , 2009, International Journal of Computer Vision.

[69]  Stephen Lin,et al.  Shading-Based Shape Refinement of RGB-D Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  Zhaopeng Meng,et al.  Better Together: Shading Cues and Multi-View Stereo for Reconstruction Depth Optimization , 2020, IEEE Access.

[71]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[72]  Lu Fang,et al.  SurfaceNet: An End-to-End 3D Neural Network for Multiview Stereopsis , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[73]  Li Zhang,et al.  Spacetime stereo: shape recovery for dynamic scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[74]  Kiriakos N. Kutulakos,et al.  A Theory of Shape by Space Carving , 2000, International Journal of Computer Vision.

[75]  Venu Madhav Govindu,et al.  Efficient and Robust Large-Scale Rotation Averaging , 2013, 2013 IEEE International Conference on Computer Vision.

[76]  Roberto Cipolla,et al.  Using Multiple Hypotheses to Improve Depth-Maps for Multi-View Stereo , 2008, ECCV.

[77]  O. Faugeras,et al.  Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[78]  Jing Xu,et al.  Point-Based Multi-View Stereo Network , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[79]  Yasuyuki Matsushita,et al.  Learning to Minify Photometric Stereo , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Yongtian Wang,et al.  Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery , 2010, ACCV.

[81]  Gordon Wetzstein,et al.  AutoInt: Automatic Integration for Fast Neural Volume Rendering , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Long Quan,et al.  A quasi-dense approach to surface reconstruction from uncalibrated images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[83]  Diego F. Nehab,et al.  Efficiently combining positions and normals for precise 3D geometry , 2005, ACM Trans. Graph..

[84]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[85]  Athinodoros S. Georghiades,et al.  Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[86]  Roberto Cipolla,et al.  A Differential Volumetric Approach to Multi-View Photometric Stereo , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[87]  Luc Van Gool,et al.  Learned Multi-patch Similarity , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[88]  S. Fang Hardware Accelerated , 2000 .

[89]  Xudong Jiang,et al.  SPLINE-Net: Sparse Photometric Stereo Through Lighting Interpolation and Normal Estimation Networks , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[90]  Holger Lange,et al.  Advances in the cooperation of shape from shading and stereo vision , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[91]  Ronen Basri,et al.  Multiview Neural Surface Reconstruction with Implicit Lighting and Material , 2020 .

[92]  Todd E. Zickler,et al.  A photometric approach for estimating normals and tangents , 2008, SIGGRAPH Asia '08.

[93]  Michael J. Brooks,et al.  The variational approach to shape from shading , 1986, Comput. Vis. Graph. Image Process..

[94]  Timo Ropinski,et al.  A Survey of Volumetric Illumination Techniques for Interactive Volume Rendering , 2014, Comput. Graph. Forum.

[95]  Takanori Maehara,et al.  Neural Inverse Rendering for General Reflectance Photometric Stereo , 2018, ICML.

[96]  Long Quan,et al.  MVSNet: Depth Inference for Unstructured Multi-view Stereo , 2018, ECCV.

[97]  Jiaya Jia,et al.  Efficient photometric stereo on glossy surfaces with wide specular lobes , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[98]  Roberto Cipolla,et al.  Multi-view stereo via volumetric graph-cuts , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[99]  Hongdong Li,et al.  Superpixel Soup: Monocular Dense 3D Reconstruction of a Complex Dynamic Scene , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[100]  Tao Guan,et al.  P-MVSNet: Learning Patch-Wise Matching Confidence Aggregation for Multi-View Stereo , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[101]  David J. Kriegman,et al.  Toward Reconstructing Surfaces With Arbitrary Isotropic Reflectance : A Stratified Photometric Stereo Approach , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[102]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[103]  Steven M. Seitz,et al.  Example-based photometric stereo: shape reconstruction with general, varying BRDFs , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[104]  Adam Finkelstein,et al.  PatchMatch: a randomized correspondence algorithm for structural image editing , 2009, SIGGRAPH 2009.

[105]  Boxin Shi,et al.  Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset for Spatially Varying Isotropic Materials , 2020, IEEE Transactions on Image Processing.

[106]  Roberto Cipolla,et al.  Multiview Photometric Stereo , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[107]  Luc Van Gool,et al.  Combined Depth and Outlier Estimation in Multi-View Stereo , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[108]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[109]  Yoshua Bengio,et al.  On the Spectral Bias of Neural Networks , 2018, ICML.

[110]  Qingshan Xu,et al.  Learning Inverse Depth Regression for Multi-View Stereo with Correlation Cost Volume , 2019, AAAI.

[111]  Jan-Michael Frahm,et al.  Pixelwise View Selection for Unstructured Multi-View Stereo , 2016, ECCV.