High-level control of modular robots

This paper discusses the creation of provably correct control for modular robots from high-level tasks expressed using sentences in structured English. Due to the nature of modular robots, we address problems that include requirements on the geometry and motion characteristics of the robot; these requirements are captured using traits in the specification that are then used in the control generation process. Outlined in this paper is our approach for generating all the lower levels of control for a modular robot given the high-level problem statement. The approach includes the use of a configuration-gait-trait library for characterizing modular robots and tools for populating this library such as a physics-based simulator and gait creator. The approach is demonstrated in simulation and with the CKBot hardware platform.

[1]  Ufuk Topcu,et al.  Receding horizon control for temporal logic specifications , 2010, HSCC '10.

[2]  El-Ghazali Talbi,et al.  Using Genetic Algorithms for Robot Motion Planning , 1991, Geometric Reasoning for Perception and Action.

[3]  Calin Belta,et al.  A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications , 2008, IEEE Transactions on Automatic Control.

[4]  Ying Zhang,et al.  Robotics: modular robots , 2002 .

[5]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[6]  Hadas Kress-Gazit,et al.  LTLMoP: Experimenting with language, Temporal Logic and robot control , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Friedrich Pfeiffer,et al.  Six-legged technical walking considering biological principles , 1995, Robotics Auton. Syst..

[8]  Mark Yim,et al.  A Biologically-Inspired Dynamic Legged Locomotion With a Modular Reconfigurable Robot , 2008 .

[9]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[10]  Amir Pnueli,et al.  Synthesis of Reactive(1) designs , 2006, J. Comput. Syst. Sci..

[11]  K. Tomita,et al.  Self-reconfigurable modular robot - experiments on reconfiguration and locomotion , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[12]  Sebastian Castro Fernandez High-Level Control Of Modular Robots , 2012 .

[13]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[14]  Mark Yim,et al.  Modular Self-Reconfigurable Robots , 2009, Encyclopedia of Complexity and Systems Science.

[15]  Hadas Kress-Gazit,et al.  Translating Structured English to Robot Controllers , 2008, Adv. Robotics.

[16]  Hadas Kress-Gazit,et al.  Automatic synthesis of robot controllers for tasks with locative prepositions , 2010, 2010 IEEE International Conference on Robotics and Automation.

[17]  A.J. Ijspeert,et al.  Online optimization of modular robot locomotion , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[18]  Hadas Kress-Gazit,et al.  Temporal-Logic-Based Reactive Mission and Motion Planning , 2009, IEEE Transactions on Robotics.

[19]  Mark Yim,et al.  Dynamic Rolling for a Modular Loop Robot , 2006, ISER.

[20]  E. Frazzoli,et al.  Complex mission optimization for Multiple-UAVs using Linear Temporal Logic , 2008, 2008 American Control Conference.

[21]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[22]  Eiichi Yoshida,et al.  Motion Planning for a Self-Reconfigurable Modular Robot , 2000, ISER.

[23]  S Grillner,et al.  Central pattern generators for locomotion, with special reference to vertebrates. , 1985, Annual review of neuroscience.

[24]  Daniel Marbach,et al.  Co-evolution of Configuration and Control for Homogenous Modular Robots , 2004 .

[25]  Mark Yim,et al.  Reconfiguration for Modular Robots Using Kinodynamic Motion Planning , 2008 .

[26]  Mark Yim,et al.  Automatic Configuration Recognition Methods in Modular Robots , 2008, Int. J. Robotics Res..

[27]  H. Kurokawa,et al.  Automatic locomotion design and experiments for a Modular robotic system , 2005, IEEE/ASME Transactions on Mechatronics.

[28]  Mark Vim,et al.  Climbing with Snake-Like Robots , 2001 .

[29]  Benjamin Johnson,et al.  Probabilistic Analysis of Correctness of High-Level Robot Behavior with Sensor Error , 2011, Robotics: Science and Systems.

[30]  Lydia E. Kavraki,et al.  Sampling-based motion planning with temporal goals , 2010, 2010 IEEE International Conference on Robotics and Automation.

[31]  Gregory S. Chirikjian,et al.  Modular Robot Motion Planning Using Similarity Metrics , 2001, Auton. Robots.

[32]  Calin Belta,et al.  Motion planning and control from temporal logic specifications with probabilistic satisfaction guarantees , 2010, 2010 IEEE International Conference on Robotics and Automation.