Survey of UAV motion planning

Motion planning is a vital module for unmanned aerial vehicles (UAVs), especially in scenarios of autonomous navigation and operation. This survey delivers some recent state-of-the-art UAV motion planning algorithms and related applications. The logic flow of this survey is divided as the path finding, which is the front-end of most motion planning systems, and the trajectory optimisation, which usually serves as the back-end. Motivation, methodology, problem formulation and derivation are given in this survey, in detail. Finally, a section about real-world applications is given, where roles and effectiveness of most popular motion planning methods are revealed.

[1]  Yasar Ayaz,et al.  RRT*-SMART: A Rapid Convergence Implementation of RRT* , 2013 .

[2]  Weiwei Wan,et al.  Survey of optimal motion planning , 2019, IET Cyber-Systems and Robotics.

[3]  Sven Koenig,et al.  Fast replanning for navigation in unknown terrain , 2005, IEEE Transactions on Robotics.

[4]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[5]  Maxim Likhachev,et al.  Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles , 2008, Int. J. Robotics Res..

[6]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[7]  Pieter Abbeel,et al.  Motion planning with sequential convex optimization and convex collision checking , 2014, Int. J. Robotics Res..

[8]  Yi Lin,et al.  Autonomous aerial navigation using monocular visual‐inertial fusion , 2018, J. Field Robotics.

[9]  Paulo Martins Engel,et al.  Exploration method using harmonic functions , 2002, Robotics Auton. Syst..

[10]  James J. Little,et al.  Autonomous vision-based robotic exploration and mapping using hybrid maps and particle filters , 2009, Image Vis. Comput..

[11]  Yu Zhang,et al.  Robust Autonomous Flight in Constrained and Visually Degraded Shipboard Environments , 2017, J. Field Robotics.

[12]  Wolfram Burgard,et al.  Coordinated multi-robot exploration , 2005, IEEE Transactions on Robotics.

[13]  StücklerJörg,et al.  Multilayered Mapping and Navigation for Autonomous Micro Aerial Vehicles , 2016 .

[14]  E. KorfRichard Depth-first iterative-deepening: an optimal admissible tree search , 1985 .

[15]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[16]  ZhangYu,et al.  Robust Autonomous Flight in Constrained and Visually Degraded Shipboard Environments , 2017 .

[17]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[18]  Sebastian Thrun,et al.  Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments , 2010, Int. J. Robotics Res..

[19]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[20]  Jörg Stückler,et al.  Multilayered Mapping and Navigation for Autonomous Micro Aerial Vehicles , 2016, J. Field Robotics.

[21]  Andrew J. Barry High‐speed autonomous obstacle avoidance with pushbroom stereo , 2018, J. Field Robotics.

[22]  Leobardo Emmanuel Campos-Macias,et al.  A Hybrid Method for Online Trajectory Planning of Mobile Robots in Cluttered Environments , 2017, IEEE Robotics and Automation Letters.

[23]  Davide Scaramuzza,et al.  Active Autonomous Aerial Exploration for Ground Robot Path Planning , 2017, IEEE Robotics and Automation Letters.

[24]  Vijay Kumar,et al.  Fast, autonomous flight in GPS‐denied and cluttered environments , 2017, J. Field Robotics.

[25]  Vijay Kumar,et al.  Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments , 2017, IEEE Robotics and Automation Letters.