Prediction error identification of linear systems: A nonparametric Gaussian regression approach
暂无分享,去创建一个
Alessandro Chiuso | Giuseppe De Nicolao | Gianluigi Pillonetto | G. Pillonetto | A. Chiuso | G. Nicolao
[1] David J. C. MacKay,et al. Comparison of Approximate Methods for Handling Hyperparameters , 1999, Neural Computation.
[2] David M. Auslander,et al. Control and dynamic systems , 1970 .
[3] Clifford M. Hurvich,et al. Regression and time series model selection in small samples , 1989 .
[4] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[5] Bernhard Schölkopf,et al. Bayesian Kernel Methods , 2002, Machine Learning Summer School.
[6] Javad Mohammadpour,et al. Control of linear parameter varying systems with applications , 2012 .
[7] G. Wahba. Spline models for observational data , 1990 .
[8] Michael Athans,et al. Analysis of gain scheduled control for nonlinear plants , 1990 .
[9] S. Smale,et al. Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .
[10] H. Akaike. A new look at the statistical model identification , 1974 .
[11] G. Pillonetto,et al. Nonlinear system identification via Gaussian regression and mixtures of kernels , 2009 .
[12] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[13] Antonio Vicino,et al. Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..
[14] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[15] Peter C. Young,et al. Recursive and en-bloc approaches to signal extraction , 1999 .
[16] B. Ninness,et al. System identification of linear parameter varying state-space models , 2011 .
[17] W. Gersch,et al. A smoothness priors long AR model method for spectral estimation , 1985, IEEE Transactions on Automatic Control.
[18] Andrew Harvey,et al. Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .
[19] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[20] Henrik Ohlsson,et al. On the estimation of transfer functions, regularizations and Gaussian processes - Revisited , 2012, Autom..
[21] U. Desai,et al. A realization approach to stochastic model reduction , 1985 .
[22] Gianluigi Pillonetto,et al. Input estimation in nonlinear dynamical systems using differential algebra techniques , 2006, Autom..
[23] L. Silverman,et al. Model reduction via balanced state space representations , 1982 .
[24] Hugues Garnier,et al. Refined instrumental variable methods for identification of LPV Box-Jenkins models , 2010, Autom..
[25] P. Young,et al. Identification of non-linear stochastic systems by state dependent parameter estimation , 2001 .
[26] M. Bertero. Linear Inverse and III-Posed Problems , 1989 .
[27] Giuseppe De Nicolao,et al. Regularization networks: fast weight calculation via Kalman filtering , 2001, IEEE Trans. Neural Networks.
[28] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[29] B. M. Pötscher,et al. MODEL SELECTION AND INFERENCE: FACTS AND FICTION , 2005, Econometric Theory.
[30] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[31] T. Louis,et al. Bayes and Empirical Bayes Methods for Data Analysis. , 1997 .
[32] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[33] U. Desai,et al. A transformation approach to stochastic model reduction , 1984 .
[34] Roland Tóth,et al. Asymptotically optimal orthonormal basis functions for LPV system identification , 2009, Autom..
[35] G. Kitagawa. Smoothness priors analysis of time series , 1996 .
[36] G. Kitagawa,et al. A Smoothness Priors–State Space Modeling of Time Series with Trend and Seasonality , 1984 .
[37] K. Mengersen,et al. A Bayesian – Decision Theoretic Approach to Model Error Modeling , 2022 .
[38] Bassam Bamieh,et al. Identification of linear parameter varying models , 2002 .
[39] Giuseppe De Nicolao,et al. Fast algorithms for nonparametric population modeling of large data sets , 2009, Autom..
[40] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[41] Roland Toth,et al. Modeling and Identification of Linear Parameter-Varying Systems , 2010 .
[42] Yuhong Yang. Can the Strengths of AIC and BIC Be Shared , 2005 .
[43] E. Hannan. The Estimation of the Order of an ARMA Process , 1980 .
[44] Alessandro Chiuso,et al. Subspace identification using predictor estimation via Gaussian regression , 2008, 2008 47th IEEE Conference on Decision and Control.
[45] D. Barry. Nonparametric Bayesian Regression , 1986 .
[46] Gianluigi Pillonetto,et al. Bayes and empirical Bayes semi-blind deconvolution using eigenfunctions of a prior covariance , 2007, Autom..
[47] Okko H. Bosgra,et al. LPV control for a wafer stage: beyond the theoretical solution , 2005 .
[48] Gene H. Golub,et al. Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.
[49] Giuseppe De Nicolao,et al. Nonparametric identification of population models via Gaussian processes , 2007, Autom..
[50] F. Girosi,et al. Networks for approximation and learning , 1990, Proc. IEEE.
[51] Dietmar Bauer,et al. Order estimation for subspace methods , 2001, Autom..
[52] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[53] Alessandro Chiuso,et al. The role of vector autoregressive modeling in predictor-based subspace identification , 2007, Autom..
[54] Howard L. Weinert. Fixed Interval Smoothing for State Space Models , 2001 .
[55] Liuping Wang,et al. Use of PRESS residuals in dynamic system identification , 1996, Autom..
[56] Graham C. Goodwin,et al. Non-stationary stochastic embedding for transfer function estimation , 1999, Autom..
[57] N. D. Bruijn. Asymptotic methods in analysis , 1958 .
[58] G. Pillonetto,et al. Estimating parameters and stochastic functions of one variable using nonlinear measurement models , 2004 .
[59] Michel Loève,et al. Probability Theory I , 1977 .
[60] J. Suykens,et al. Subspace identification of Hammerstein systems using least squares support vector machines , 2005 .
[61] Peter C. Young,et al. Recursive Estimation, Forecasting, and Adaptive Control , 1989 .
[62] Michel Verhaegen,et al. Subspace identification of Bilinear and LPV systems for open- and closed-loop data , 2009, Autom..
[63] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[64] Bonaventure Intercontinental,et al. ON DECISION AND CONTROL , 1985 .
[65] Alessandro Chiuso,et al. A New Kernel-Based Approach for NonlinearSystem Identification , 2011, IEEE Transactions on Automatic Control.
[66] Robert B. Litterman,et al. Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .
[67] Dennis V. Lindley,et al. Empirical Bayes Methods , 1974 .
[68] B. Anderson,et al. Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[69] Giuseppe De Nicolao,et al. A new kernel-based approach for linear system identification , 2010, Autom..
[70] Mario Sznaier,et al. An LMI approach to control-oriented identification and model (In) validation of LPV systems , 2003, IEEE Trans. Autom. Control..
[71] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[72] Paul M.J. Van den Hof,et al. Prediction-Error Identification of LPV Systems: Present and Beyond , 2012 .