Experimentally tracing the key steps in the origin of life: The aromatic world.

Life is generally believed to emerge on Earth, to be at least functionally similar to life as we know it today, and to be much simpler than modern life. Although minimal life is notoriously difficult to define, a molecular system can be considered alive if it turns resources into building blocks, replicates, and evolves. Primitive life may have consisted of a compartmentalized genetic system coupled with an energy-harvesting mechanism. How prebiotic building blocks self-assemble and transform themselves into a minimal living system can be broken into two questions: (1) How can prebiotic building blocks form containers, metabolic networks, and informational polymers? (2) How can these three components cooperatively organize to form a protocell that satisfies the minimal requirements for a living system? The functional integration of these components is a difficult puzzle that requires cooperation among all the aspects of protocell assembly: starting material, reaction mechanisms, thermodynamics, and the integration of the inheritance, metabolism, and container functionalities. Protocells may have been self-assembled from components different from those used in modern biochemistry. We propose that assemblies based on aromatic hydrocarbons may have been the most abundant flexible and stable organic materials on the primitive Earth and discuss their possible integration into a minimal life form. In this paper we attempt to combine current knowledge of the composition of prebiotic organic material of extraterrestrial and terrestrial origin, and put these in the context of possible prebiotic scenarios. We also describe laboratory experiments that might help clarify the transition from nonliving to living matter using aromatic material. This paper presents an interdisciplinary approach to interface state of the art knowledge in astrochemistry, prebiotic chemistry, and artificial life research.

[1]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[2]  L. Orgel,et al.  Polyphosphate and trimetaphosphate formation under potentially prebiotic conditions , 2005, Journal of Molecular Evolution.

[3]  Kensei Kobayashi,et al.  Prebiotic synthesis from CO atmospheres: Implications for the origins of life , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Beda A Hofmann,et al.  The Urey instrument: an advanced in situ organic and oxidant detector for Mars exploration. , 2008, Astrobiology.

[5]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[6]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[7]  S. Berry,et al.  The Chemical Basis of Membrane Bioenergetics , 2002, Journal of Molecular Evolution.

[8]  A. Eschenmoser The TNA-Family of Nucleic Acid Systems: Properties and Prospects , 2004, Origins of life and evolution of the biosphere.

[9]  L. Orgel,et al.  Model for Origin of Monosaccharides: Synthesis of Sugars in Potentially Prebiotic Conditions , 1967, Nature.

[10]  Sun Kwok,et al.  The synthesis of organic and inorganic compounds in evolved stars , 2004, Nature.

[11]  J. Surace,et al.  Accepted for Publication in the Astrophysical Journal Spitzer Detection of PAH and Silicate Dust Features in the Mid-Infrared Spectra of z ∼ 2 Ultraluminous Infrared Galaxies , 2005 .

[12]  Stanley L. Miller,et al.  An efficient prebiotic synthesis of cytosine and uracil , 1995, Nature.

[13]  B. Simoneit,et al.  Lipid Synthesis Under Hydrothermal Conditions by Fischer- Tropsch-Type Reactions , 1999, Origins of life and evolution of the biosphere.

[14]  L. Colangeli,et al.  A New Approach to the Puzzle of the Ultraviolet Interstellar Extinction Bump , 1998 .

[15]  J. Greenberg Making a comet nucleus , 1998 .

[16]  R. Minard,et al.  Hydrogen cyanide polymers connect cosmochemistry and biochemistry , 2008, Proceedings of the International Astronomical Union.

[17]  V. Kompanichenko Three stages of the origin of life process: bifurcation, stabilization and inversion , 2008, International Journal of Astrobiology.

[18]  Eric Meggers,et al.  A simple glycol nucleic acid. , 2005, Journal of the American Chemical Society.

[19]  Aivo Lepland,et al.  Reassessing the evidence for the earliest traces of life , 2002, Nature.

[20]  S. L. Miller,et al.  The mechanism of synthesis of amino acids by electric discharges. , 1957, Biochimica et biophysica acta.

[21]  M. Egholm,et al.  Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. , 1991, Science.

[22]  K. D. McKeegan,et al.  Evidence for life on Earth before 3,800 million years ago , 1996, Nature.

[23]  D. Lancet,et al.  Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  N. Packard,et al.  Transitions from Nonliving to Living Matter , 2004, Science.

[25]  P. Ehrenfreund,et al.  A quantitative study of proton irradiation and UV photolysis of benzene in interstellar environments , 2005 .

[26]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[27]  G. Wächtershäuser,et al.  The origin of life and its methodological challenge. , 1997, Journal of theoretical biology.

[28]  A. Cairns-smith Sketches for a Mineral Genetic Material , 2005 .

[29]  A. Brack,et al.  Amino acids from ultraviolet irradiation of interstellar ice analogues , 2002, Nature.

[30]  Takashi Kato Self-Assembly of Phase-Segregated Liquid Crystal Structures , 2002, Science.

[31]  L. Orgel,et al.  Urea-Inorganic Phosphate Mixtures as Prebiotic Phosphorylating Agents , 1971, Science.

[32]  A. Schwartz,et al.  Thermal Synthesis of Nucleoside H-Phosphonates Under Mild Conditions , 2005, Origins of Life and Evolution of Biospheres.

[33]  Alexander A. Pavlov,et al.  A Hydrogen-Rich Early Earth Atmosphere , 2005, Science.

[34]  S. Sandford,et al.  Modeling the Unidentified Infrared Emission with Combinations of Polycyclic Aromatic Hydrocarbons , 1999, The Astrophysical journal.

[35]  Can Fluffy Dust Alleviate the Subsolar Interstellar Abundance Problem , 2005, astro-ph/0503564.

[36]  D. Whitten,et al.  Photooxidation of a Conjugated Diene by an Exciplex Mechanism: Amplification via Radical Chain Reactions in the Perylene Diimide-Photosensitized Oxidation of α-Terpinene , 1998 .

[37]  S. Prasad,et al.  UV radiation field inside dense clouds: its possible existence and chemical implications , 1983 .

[38]  Thomas Gold,et al.  The deep, hot biosphere. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Lauretta,et al.  Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. , 2005, Astrobiology.

[40]  B. Foing,et al.  ASTRONOMY AND ASTROPHYSICS LETTER Letter to the Editor New evidences for interstellar C60 +⋆ , 1996 .

[41]  F. Cataldo From Elemental Carbon to Complex Macromolecular Networks in Space , 2004 .

[42]  K. Kvenvolden,et al.  Monocarboxylic Acids in Murray and Murchison Carbonaceous Meteorites , 1973, Nature.

[43]  M. Schulte,et al.  The Emergence of Metabolism from Within Hydrothermal Systems , 1998 .

[44]  C. Chyba,et al.  Cometary delivery of organic molecules to the early Earth. , 1990, Science.

[45]  Steen Rasmussen,et al.  An Astrophysical Basis for a Universal Origin of Life , 2003, Adv. Complex Syst..

[46]  G. Wächtershäuser,et al.  Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. , 1998, Science.

[47]  Susana Iglesias-Groth,et al.  Fullerenes and Buckyonions in the Interstellar Medium , 2004 .

[48]  P. Ehrenfreund,et al.  The Astrobiology of Nucleobases , 2003 .

[49]  P. Y.J. THE ORGANIC REFRACTORY MATERIAL IN THE DIFFUSE INTERSTELLAR MEDIUM : MID-INFRARED SPECTROSCOPIC CONSTRAINTS , 2002 .

[50]  Béla Bollobás,et al.  First cycles in random directed graph processes , 1989, Discret. Math..

[51]  G. Cody,et al.  Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. , 2000, Science.

[52]  R. Coleman,et al.  H2-rich fluids from serpentinization: geochemical and biotic implications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Stanley L. Miller,et al.  The Molecular Origins of Life: The endogenous synthesis of organic compounds , 1998 .

[54]  J. Crovisier The Molecular Complexity of Comets , 2004 .

[55]  J. Baross,et al.  An Hypothesis Concerning the Relationships Between Submarine Hot Springs and the Origin of Life on Earth , 1981 .

[56]  C. Langton Self-reproduction in cellular automata , 1984 .

[57]  T. Henning,et al.  Laboratory Studies of Carbonaceous Dust Analogs , 2004 .

[58]  J. Bada,et al.  Submarine hot springs and the origin of life , 1988, Nature.

[59]  D. Bartel,et al.  Synthesizing life , 2001, Nature.

[60]  W. Irvine Comets: A Link between Interstellar and Nebular Chemistry , 2000 .

[61]  N. Sleep,et al.  The habitat and nature of early life , 2001, Nature.

[62]  M. S. Chadha,et al.  A possible prebiotic synthesis of thymine: uracil-formaldehyde-formic acid reaction. , 1977, Bio Systems.

[63]  Charles H Lineweaver,et al.  Finding a second sample of life on earth. , 2005, Astrobiology.

[64]  Andrew Steele,et al.  Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission. , 2007, Astrobiology.

[65]  S L Miller,et al.  Investigation of the prebiotic synthesis of amino acids and RNA bases from CO2 using FeS/H2S as a reducing agent. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[66]  L. Orgel,et al.  Catalysts for the self-polymerization of adenosine cyclic 2′,3′-phosphate , 1973, Journal of Molecular Evolution.

[67]  H. Kaneda,et al.  Detection of PAH Emission Features from Nearby Elliptical Galaxies with the Spitzer Infrared Spectrograph , 2005 .

[68]  S. Kauffman Autocatalytic sets of proteins. , 1986 .

[69]  M. Robertson,et al.  Rates of decomposition of ribose and other sugars: implications for chemical evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[70]  K. M. Menten,et al.  High-excitation CO in a quasar host galaxy at z = 6.42 , 2003, astro-ph/0307408.

[71]  R. Mathies,et al.  Urey: Mars Organic and Oxidant Detector , 2008 .

[72]  Lucian A. Lucia,et al.  Cooperative electron transfer fragmentation reactions. Amplification of a photoreaction through a tandem chain fragmentation of acceptor and donor pinacols , 1998 .

[73]  The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-Poor Stars , 2005, Science.

[74]  L. Orgel,et al.  Studies in prebiotic synthesis. VII , 1972, Journal of Molecular Evolution.

[75]  M. Reimold,et al.  Toward replicatable, multifunctional, nanoscaffolded machines. A chemical manifesto , 2003 .

[76]  M. Beier,et al.  Chemical etiology of nucleic acid structure: comparing pentopyranosyl-(2'-->4') oligonucleotides with RNA. , 1999, Science.

[77]  J. Lehn,et al.  Macroscopic expression of molecular recognition. Supramolecular liquid crystalline phases induced by association of complementary heterocyclic components , 1989 .

[78]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[79]  B. Foing,et al.  Detection of two interstellar absorption bands coincident with spectral features of C60+ , 1994, Nature.

[80]  T. M. Harrison,et al.  Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago , 2001, Nature.

[81]  O. Szewczyk,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[82]  P. Cassen,et al.  Thermal Processing of Interstellar Dust Grains in the Primitive Solar Environment , 1997 .

[83]  D. Heymann,et al.  C60 and Giant Fullerenes in Soot Condensed in Vapors with Variable C/H2 Ratio , 2004 .

[84]  B. Hayter,et al.  Synthesis of Cytidine Ribonucleotides by Stepwise Assembly of the Heterocycle on a Sugar Phosphate , 2003, Chembiochem : a European journal of chemical biology.

[85]  Stanley L. Miller,et al.  Prebiotic synthesis in atmospheres containing CH4, CO, and CO2 , 1983, Journal of Molecular Evolution.

[86]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[87]  R. Brooks The relationship between matter and life , 2001, Nature.

[88]  Juan R. Granja,et al.  A self-replicating peptide , 1996, Nature.

[89]  J. Pinto,et al.  Photochemical Production of Formaldehyde in Earth's Primitive Atmosphere , 1980, Science.

[90]  V. Basiuk,et al.  Dust particles in the atmospheres of terrestrial planets and their roles for prebiotic chemistry: An overview , 1996 .

[91]  L. Orgel,et al.  Conditions for Purine Synthesis: Did Prebiotic Synthesis Occur at Low Temperatures? , 1966, Science.

[92]  R. Schneider,et al.  The Detectability of the First Stars and Their Cluster Enrichment Signatures , 2003, astro-ph/0301628.

[93]  Roger Taylor,et al.  The chemistry of fullerenes , 1995, Nature.

[94]  Diffuse Interstellar Bands in NGC 1448 , 2004, astro-ph/0409340.

[95]  L E Orgel,et al.  Synthesis in sugars in potentially prebiotic conditions. , 1967, Nature.

[96]  A. Schwartz Specific phosphorylation of the 2′- and 3′- positions in ribonucleosides , 1969 .

[97]  P. G. Mezger,et al.  Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. , 1983 .

[98]  J. Bada,et al.  Extraterrestrial Organic Compounds in Meteorites , 2002 .

[99]  L E Orgel,et al.  The origin of life--a review of facts and speculations. , 1998, Trends in biochemical sciences.

[100]  B. Rode,et al.  Peptides and the origin of life. , 1999, Peptides.

[101]  Ana Heras,et al.  Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618 , 2001 .

[102]  G. Hodgson,et al.  Prebiotic porphyrin genesis: porphyrins from electric discharge in methane, ammonia, and water vapor. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[103]  N H Horowitz,et al.  On the Evolution of Biochemical Syntheses. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[104]  A W Schwartz,et al.  The case for an ancestral genetic system involving simple analogues of the nucleotides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[105]  J. Blank,et al.  Astrophysical and astrochemical insights into the origin of life , 2002 .

[106]  S. Atreya,et al.  Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth , 1979 .

[107]  L. Orgel,et al.  Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. , 1970, Journal of molecular biology.

[108]  P. Luisi,et al.  Reverse micelles as hosts for proteins and small molecules. , 1988, Biochimica et biophysica acta.

[109]  M. Levy,et al.  Peptide nucleic acids rather than RNA may have been the first genetic molecule. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[110]  M. Sephton,et al.  Carbon and nitrogen isotope ratios in meteoritic organic matter: indicators of alteration processes on the parent asteroid , 2004, International Journal of Astrobiology.

[111]  Steen Rasmussen,et al.  Towards a Quantitative Theory of the Origin of Life , 1987, ALIFE.

[112]  L. Orgel,et al.  Studies in prebiotic synthesis. IV. Conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines. , 1968, Journal of molecular biology.

[113]  J. Charlou,et al.  Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge , 2001 .

[114]  A. Goeres,et al.  The envelopes of R Coronae Borealis stars. I : A physical model of the decline events due to dust formation , 1992 .

[115]  E. Dartois,et al.  Ultraviolet photoproduction of ISM dust Laboratory characterisation and astrophysical relevance , 2005 .

[116]  J. Gogarten,et al.  Cladogenesis, coalescence and the evolution of the three domains of life. , 2004, Trends in genetics : TIG.

[117]  P. Ehrenfreund,et al.  Ice Chemistry in Space , 2003 .

[118]  Christopher P. McKay,et al.  Comets and the origin and evolution of life , 2006 .

[119]  G. Flynn,et al.  The origin of organic matter in the solar system: Evidence from the interplanetary dust particles , 2003 .

[120]  A. Tuck The Role of Atmospheric Aerosols in the Origin Of Life , 2002 .

[121]  Robert M. Hazen,et al.  Genesis: The Scientific Quest for Life's Origin , 2005 .

[122]  J. Silk,et al.  Cosmic Star Formation, Reionization, and Constraints on Global Chemical Evolution , 2004, astro-ph/0405355.

[123]  N. Packard,et al.  A classification of long-term evolutionary dynamics , 1998 .

[124]  Hiroki Sayama Introduction of structural dissolution into Langton's self-reproducing loop , 1998 .

[125]  Steen Rasmussen,et al.  Emergence of protocellular growth laws , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[126]  Pier Luigi Luisi,et al.  PHOTOINDUCED FORMATION OF BILAYER VESICLES , 1998 .

[127]  Sumiko Matsuoka,et al.  Origin of organic matter in early solar system. VI - Catalytic synthesis of nitriles, nitrogen bases and porphyrin-like pigments. , 1972 .

[128]  W. Stillwell On the origin of photophosphorylation. , 1977, Journal of theoretical biology.

[129]  P. Ehrenfreund,et al.  Comparison of interstellar and meteoritic organic matter at 3.4 microns , 1991 .

[130]  J. Bada,et al.  Impact melting of frozen oceans on the early Earth: Implications for the origin of life , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[131]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[132]  N. Holm,et al.  The Molecular Origins of Life: Hydrothermal systems , 1998 .

[133]  O. Guillois,et al.  Diamond Infrared Emission Bands in Circumstellar Media , 1999 .

[134]  Mark A. Bedau,et al.  Towards a comparison of evolutionary creativity in biological and cultural evolution , 2002 .

[135]  E. Feigelson,et al.  Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes , 1989 .

[136]  W. Bains Many chemistries could be used to build living systems. , 2004, Astrobiology.

[137]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[138]  M. Levy,et al.  The stability of the RNA bases: implications for the origin of life. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[139]  W. Duley,et al.  Ultraviolet Absorption in Amorphous Carbons: Polycyclic Aromatic Hydrocarbons and the 2175 Å Extinction Feature , 2004 .

[140]  J. Nuth Meteoritic evidence that graphite is rare in the interstellar medium , 1985, Nature.

[141]  Pier Luigi Luisi,et al.  Enzymatic RNA Synthesis in Self-Reproducing Vesicles: An Approach to the Construction of a Minimal Synthetic Cell , 1994 .

[142]  J. Crovisier,et al.  The composition of cometary volatiles , 2004 .

[143]  W. Martin,et al.  The rocky roots of the acetyl-CoA pathway. , 2004, Trends in biochemical sciences.

[144]  B. Maden,et al.  No soup for starters? Autotrophy and the origins of metabolism. , 1995, Trends in biochemical sciences.

[145]  S. Veintemillas-Verdaguer,et al.  Synthesis of Polycyclic Aromatic Hydrocarbons and Acetylene Polymers in Ice: A Prebiotic Scenario , 2008, Chemistry & biodiversity.

[146]  K. Lindgren,et al.  Evolutionary dynamics of spatial games , 1994 .

[147]  B. Karlan Where are we now and where are we going? , 1995, Gynecologic oncology.

[148]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[149]  C. T. Pillinger,et al.  Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ13C of individual compounds , 2000 .

[150]  J. Oró,et al.  Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. , 1961, Archives of biochemistry and biophysics.

[151]  William E Seyfried,et al.  Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar , 1996 .

[152]  S. Charnley,et al.  Chemistry of Protoplanetary Disks , 2004 .

[153]  J. Oró,et al.  Synthesis of adenine from ammonium cyanide , 1960 .

[154]  Kristian Lindgren,et al.  Evolutionary phenomena in simple dynamics , 1992 .

[155]  Heinz Baumann,et al.  Evolution of murine α1-proteinase inhibitors: Gene amplification and reactive center divergence , 1994, Journal of Molecular Evolution.

[156]  L. Becker,et al.  Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite , 1997, Meteoritics & planetary science.

[157]  A. Tielens,et al.  Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes , 1992 .

[158]  G. F. Joyce The antiquity of RNA-based evolution , 2002, Nature.

[159]  Thomas S. Ray,et al.  An Approach to the Synthesis of Life , 1991 .

[160]  D. Deamer,et al.  Membrane self‐assembly processes: Steps toward the first cellular life , 2002, The Anatomical record.

[161]  S. Kauffman,et al.  Autocatalytic replication of polymers , 1986 .

[162]  Farid Salama,et al.  Carbon in the universe. , 1998, Science.

[163]  Pascale Ehrenfreund,et al.  Carbon molecules in space: from astrochemistry to astrobiology. , 2006, Faraday discussions.

[164]  E. Anders,et al.  Origin of organic matter in early solar system—IV. Amino acids: Confirmation of catalytic synthesis by mass spectrometry , 1971 .

[165]  V I Tarasov,et al.  Quantum mechanical polarizable force field (QMPFF3): refinement and validation of the dispersion interaction for aromatic carbon. , 2006, The Journal of chemical physics.

[166]  John S. McCaskill,et al.  Open Problems in Artificial Life , 2000, Artificial Life.

[167]  A. Tielens,et al.  Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal. , 1996, The Astrophysical journal.

[168]  S. Derenne,et al.  Solid state CP/MAS 13 C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study , 2000 .

[169]  D. Deamer,et al.  The Lipid World , 2001, Origins of life and evolution of the biosphere.

[170]  M. Fujii,et al.  Defective Carbon Onions in Interstellar Space as the Origin of the Optical Extinction Bump at 217.5 Nanometers , 2004 .

[171]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[172]  J. Nuth,et al.  The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems. , 2003, Astrobiology.

[173]  M. Sephton,et al.  Organic compounds in carbonaceous meteorites. , 2002, Natural product reports.

[174]  H. Watanabe,et al.  Volcanic production of polyphosphates and its relevance to prebiotic evolution , 1991, Nature.

[175]  Robert H. White Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C , 1984, Nature.

[176]  David W. Deamer,et al.  Boundary structures are formed by organic components of the Murchison carbonaceous chondrite , 1985, Nature.

[177]  J. Kasting Evolution of a habitable planet , 2003 .

[178]  Deborah S. Kelley,et al.  Volcanoes, Fluids, and Life at Mid-Ocean Ridge Spreading Centers , 2002 .

[179]  S. Weidenschilling,et al.  Formation of planetesimals in the solar nebula , 1993 .

[180]  A. Boss From Molecular Clouds to Circumstellar Disks , 2005 .

[181]  B. Foing,et al.  PAH charge state distribution and DIB carriers: Implications from the line of sight toward HD 147889 , , 2005 .

[182]  A. Negrón-Mendoza,et al.  A review of conditions affecting the radiolysis due to40K on nucleic acid bases and their derivatives adsorbed on clay minerals: Implications in prebiotic chemistry , 1996, Origins of life and evolution of the biosphere.

[183]  L. Orgel,et al.  Phosphorylation with Inorganic Phosphates at Moderate Temperatures , 1967, Science.

[184]  J R Cronin,et al.  Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. , 1992, Geochimica et cosmochimica acta.

[185]  G. Schlesinger,et al.  Additions and Corrections - Equilibrium and Kinetics of Glyconitrile Formation in Aqueous Solution. , 1973 .

[186]  B. Rode,et al.  Peptides and the origin of life1 , 1999, Peptides.

[187]  V. Canuto,et al.  Oxygen and ozone in the early earth's atmosphere , 1983 .

[188]  A. Brack,et al.  Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues , 2002 .

[189]  A. Pohorille,et al.  Artificial cells: prospects for biotechnology. , 2002, Trends in biotechnology.

[190]  R. Solé,et al.  Chaos in Chemoton Dynamics , 2022 .

[191]  M. Sephton,et al.  Recognizing life in the Solar System: guidance from meteoritic organic matter , 2005, International Journal of Astrobiology.

[192]  D. Deamer,et al.  Polycyclic aromatic hydrocarbons: primitive pigment systems in the prebiotic environment. , 1992, Advances in space research : the official journal of the Committee on Space Research.

[193]  Pascale Ehrenfreund,et al.  A voyage from dark clouds to the early Earth , 2000 .

[194]  D. Lancet,et al.  Composing life , 2000, EMBO reports.

[195]  Harold J. Morowitz,et al.  The chemical logic of a minimum protocell , 2005, Origins of life and evolution of the biosphere.

[196]  D. Deamer,et al.  Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. , 2002, Biochimica et biophysica acta.

[197]  Martin Nilsson,et al.  Bridging Nonliving and Living Matter , 2003, Artificial Life.

[198]  J. Oró,et al.  Comets and the Origin and Evolution of Life , 2006 .

[199]  S. Sowerby,et al.  Effect of temperature on the adsorption of adenine. , 2001, Astrobiology.

[200]  G. Cody,et al.  NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups , 2005 .

[201]  C. G. Tinney,et al.  Observed Properties of Exoplanets : Masses, Orbits, and Metallicities(Origins : From Early Universe to Extrasolar Planets) , 2005 .

[202]  Anthony D. Keefe,et al.  Are polyphosphates or phosphate esters prebiotic reagents? , 2004, Journal of Molecular Evolution.

[203]  G. Wächtershäuser,et al.  Before enzymes and templates: theory of surface metabolism. , 1988, Microbiological reviews.

[204]  H. Cleaves,et al.  Extremophiles may be irrelevant to the origin of life. , 2004, Astrobiology.

[205]  Stanley L. Miller,et al.  The Cold Origin of Life: A. Implications Based On The Hydrolytic Stabilities Of Hydrogen Cyanide And Formamide , 2002, Origins of life and evolution of the biosphere.

[206]  M. Spaans The Synthesis of the Elements and the Formation of Stars , 2004 .

[207]  M. Schulte,et al.  Organic synthesis during fluid mixing in hydrothermal systems , 1998 .

[208]  K. Nomoto,et al.  Submitted to the Astrophysical Journal on July 13, 2003 Variations in the Abundance Pattern of Extremely Metal-poor Stars and Nucleosynthesis in Population III Supernovae , 2003 .

[209]  E. Peeters,et al.  Interstellar and circumstellar PAHs , 1999 .

[210]  T. Gold,et al.  The deep, hot biosphere. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[211]  R. Shapiro,et al.  The prebiotic role of adenine: A critical analysis , 1995, Origins of Life and Evolution of the Biosphere.

[212]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[213]  N. Pace,et al.  The universal nature of biochemistry. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[214]  A. Tielens,et al.  Detection of strongly processed ice in the central starburst of NGC 4945 , 2003, astro-ph/0302568.

[215]  L. Orgel,et al.  Cyanoacetylene in Prebiotic Synthesis , 1966, Science.

[216]  Eric Smith,et al.  Universality in intermediary metabolism. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[217]  L. Orgel,et al.  Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution. , 1998, Nouveau journal de chimie.

[218]  R. Wolfenden,et al.  The Rate of Spontaneous Decarboxylation of Amino Acids , 2000 .

[219]  H. James Cleaves,et al.  The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced From Frozen Ammonium Cyanide Solutions , 2002, Origins of life and evolution of the biosphere.

[220]  Chris Adami Learning and complexity in genetic auto-adaptive systems , 1995 .

[221]  J. Ferris Chemical Markers of Prebiotic Chemistry in Hydrothermal Systems , 1992 .

[222]  T. Gánti Biogenesis itself. , 1997, Journal of theoretical biology.

[223]  P. Ehrenfreund,et al.  Formation and photostability of N-heterocycles in space. I. The effect of nitrogen on the photostability of small aromatic molecules , 2005 .

[224]  C. Ofria,et al.  Genome complexity, robustness and genetic interactions in digital organisms , 1999, Nature.

[225]  Stanley L. Miller,et al.  Energy yields for hydrogen cyanide and formaldehyde syntheses: The hcn and amino acid concentrations in the primitive ocean , 2006, Origins of life and evolution of the biosphere.