Standard Exponential Cure Rate Model with Informative Censoring

In this article, we consider the standard cure rate model proposed by Boag (1949) and Berkson and Gage (1952). We present a new definition of informative censoring similar to Lawless (1982) and the corresponding likelihood function. Under informative censoring, we obtain the Fisher information matrix of the exponential standard cure rate model. We verify, with simulated data, the impact caused by informative censoring in the coverage probabilities and in the lengths of asymptotic confidence intervals of the parameters of interest. An example with real data is analyzed.

[1]  Svetlozar T. Rachev,et al.  Stochastic models of tumor latency and their biostatistical applications , 1997 .

[2]  Creasy Problem,et al.  Reference Posterior Distributions for Bayesian Inference , 1979 .

[3]  A Yu Yakovlev,et al.  Stochastic Models of Tumor Latency and Their Biostatistical Applications , 1996 .

[4]  S. E. Emoto,et al.  A Weibull Model for Dependent Censoring , 1990 .

[5]  J. Boag,et al.  Maximum Likelihood Estimates of the Proportion of Patients Cured by Cancer Therapy , 1949 .

[6]  L. M. M.-T. Theory of Probability , 1929, Nature.

[7]  Josemar Rodrigues,et al.  On the unification of long-term survival models , 2009 .

[8]  R. Maller,et al.  The Likelihood Ratio Test for the Presence of Immunes in a Censored Sample , 1995 .

[9]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[10]  J. Bernardo,et al.  THE FORMAL DEFINITION OF REFERENCE PRIORS , 2009, 0904.0156.

[11]  Lagakos Sw General right censoring and its impact on the analysis of survival data. , 1979 .

[12]  J G Ibrahim,et al.  Estimating Cure Rates From Survival Data , 2003, Journal of the American Statistical Association.

[13]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[14]  Joseph Berkson,et al.  Survival Curve for Cancer Patients Following Treatment , 1952 .

[15]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[16]  William A. Link,et al.  A Model for Informative Censoring , 1989 .

[17]  R. Maller,et al.  Survival Analysis with Long-Term Survivors , 1996 .

[18]  R. Wolfe,et al.  A Frailty Model for Informative Censoring , 2002, Biometrics.

[19]  S. Lagakos,et al.  Models for censored survival analysis: Constant-sum and variable-sum models , 1977 .

[20]  J. Berger The case for objective Bayesian analysis , 2006 .

[21]  Joseph G. Ibrahim,et al.  A New Bayesian Model For Survival Data With a Surviving Fraction , 1999 .

[22]  S W Lagakos,et al.  General right censoring and its impact on the analysis of survival data. , 1979, Biometrics.

[23]  John P. Klein,et al.  Estimates of marginal survival for dependent competing risks based on an assumed copula , 1995 .

[24]  Mário de Castro,et al.  A hands-on approach for fitting long-term survival models under the GAMLSS framework , 2010, Comput. Methods Programs Biomed..

[25]  M. E. Ghitany,et al.  Exponential mixture models with long-term survivors and covariates , 1994 .

[26]  Joseph G. Ibrahim,et al.  Bayesian cure rate models for malignant melanoma: a case‐study of Eastern Cooperative Oncology Group trial E1690 , 2002 .