Langevin Particle: A Self‐Adaptive Lagrangian Primitive for Flow Simulation Enhancement

We develop a new Lagrangian primitive, named Langevin particle, to incorporate turbulent flow details in fluid simulation. A group of the particles are distributed inside the simulation domain based on a turbulence energy model with turbulence viscosity. A particle in particular moves obeying the generalized Langevin equation, a well known stochastic differential equation that describes the particle's motion as a random Markov process. The resultant particle trajectory shows self‐adapted fluctuation in accordance to the turbulence energy, while following the global flow dynamics. We then feed back Langevin forces to the simulation based on the stochastic trajectory, which drive the flow with necessary turbulence. The new hybrid flow simulation method features nonrestricted particle evolution requiring minimal extra manipulation after initiation. The flow turbulence is easily controlled and the total computational overhead of enhancement is minimal based on typical fluid solvers.

[1]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[2]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[3]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[4]  R. Fedkiw,et al.  A novel algorithm for incompressible flow using only a coarse grid projection , 2010, ACM Trans. Graph..

[5]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[6]  E. Peirano,et al.  PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow , 2004, 1008.2890.

[7]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[8]  Jernej Barbic,et al.  Real-time control of physically based simulations using gentle forces , 2008, ACM Trans. Graph..

[9]  James F. O'Brien,et al.  Fluids in deforming meshes , 2005, SCA '05.

[10]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[11]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[12]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[13]  W. Coffey,et al.  The Langevin equation : with applications to stochastic problems in physics, chemistry, and electrical engineering , 2012 .

[14]  Robert Bridson,et al.  Curl-noise for procedural fluid flow , 2007, ACM Trans. Graph..

[15]  Stephen B. Pope,et al.  A Lagrangian two‐time probability density function equation for inhomogeneous turbulent flows , 1983 .

[16]  Hyeongseok Ko,et al.  A practical simulation of dispersed bubble flow , 2010 .

[17]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[18]  Michael Bang Nielsen,et al.  Improved Variational Guiding of Smoke Animations , 2010, Comput. Graph. Forum.

[19]  Markus H. Gross,et al.  Synthetic turbulence using artificial boundary layers , 2009, ACM Trans. Graph..

[20]  Ming C. Lin,et al.  Fast animation of turbulence using energy transport and procedural synthesis , 2008, SIGGRAPH Asia '08.

[21]  Zhi Yuan,et al.  Enhancing fluid animation with adaptive, controllable and intermittent turbulence , 2010, SCA '10.

[22]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[23]  Doug L. James,et al.  Wavelet turbulence for fluid simulation , 2008, SIGGRAPH 2008.

[24]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[25]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[26]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, ACM Trans. Graph..

[27]  Ignacio Llamas,et al.  Advections with Significantly Reduced Dissipation and Diffusion , 2007, IEEE Transactions on Visualization and Computer Graphics.

[28]  Robert Bridson,et al.  Evolving sub-grid turbulence for smoke animation , 2008, SCA '08.

[29]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[30]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.

[31]  Ronald Fedkiw,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, ACM Trans. Graph..

[32]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.

[33]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[34]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[35]  Joshi Neel,et al.  画像の例を用いた個人写真の強調 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2010 .

[36]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[37]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[38]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[39]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[40]  Sarah Tariq,et al.  Scalable fluid simulation using anisotropic turbulence particles , 2010, ACM Trans. Graph..