PyProcar: A Python library for electronic structure pre/post-processing

[1]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[2]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[3]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[4]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[5]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[6]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[7]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[8]  Gerhard Klimeck,et al.  Practical application of zone-folding concepts in tight-binding calculations , 2005 .

[9]  Hans Wondratschek,et al.  Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[10]  Hans Wondratschek,et al.  Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .

[11]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[12]  D. Orobengoa,et al.  The Bilbao Crystallographic Server , 2008 .

[13]  J. Perdew,et al.  Assessing the performance of recent density functionals for bulk solids , 2009, 0903.4037.

[14]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Chi-Cheng Lee,et al.  Unfolding first-principles band structures. , 2010, Physical review letters.

[16]  A. Kirov,et al.  Crystallography online: Bilbao Crystallographic Server , 2017 .

[17]  Gaël Varoquaux,et al.  Mayavi: 3D Visualization of Scientific Data , 2010, Computing in Science & Engineering.

[18]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[19]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[20]  A. Zunger,et al.  Extracting E versus k ⃗ effective band structure from supercell calculations on alloys and impurities , 2012 .

[21]  J. Soler,et al.  Recovering hidden Bloch character: Unfolding electrons, phonons, and slabs , 2012, 1212.5702.

[22]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[23]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[24]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[25]  Enric Canadell,et al.  Tunneling and electronic structure of the two-gap superconductor MgB2 , 2015 .

[26]  Claudia Felser,et al.  Topological Materials: Weyl Semimetals , 2016, 1611.04182.

[27]  Aldo H. Romero,et al.  Prediction and control of spin polarization in a Weyl semimetallic phase of BiSb , 2016 .

[28]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[29]  Yoyo Hinuma,et al.  Band structure diagram paths based on crystallography , 2016 .

[30]  E. Bousquet,et al.  Spin-texture induced by oxygen vacancies in Strontium perovskites (001) surfaces: A theoretical comparison between SrTiO$_3$ and SrHfO$_3$ , 2015, 1511.08079.

[31]  Guillermo Avendaño-Franco,et al.  Investigation of novel crystal structures of Bi-Sb binaries predicted using the minima hopping method. , 2016, Physical chemistry chemical physics : PCCP.

[32]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Aldo H. Romero,et al.  Giant tunable Rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures , 2017, 1701.06213.

[35]  Sobhit Singh,et al.  Structural Prediction and Theoretical Characterization of Bi-Sb Binaries: Spin-Orbit Coupling Effects , 2018 .

[36]  Aldo H. Romero,et al.  Structural, electronic, vibrational, and elastic properties of graphene/ MoS2 bilayer heterostructures , 2018, Physical Review B.

[37]  Aldo H. Romero,et al.  Topological phonons and thermoelectricity in triple-point metals , 2018, Physical Review Materials.

[38]  Aldo H. Romero,et al.  Proximity‐Induced Topological Transition and Strain‐Induced Charge Transfer in Graphene/MoS 2 Bilayer Heterostructures , 2018, Handbook of Graphene.

[39]  Jorge O. Sofo,et al.  Low Energy Phases of Bi Monolayer Predicted by Structure Search in Two Dimensions. , 2019, The journal of physical chemistry letters.

[40]  Alexey A. Soluyanov,et al.  Topology of triple-point metals , 2019, Chinese Physics B.

[41]  Yuqing He,et al.  Catalogue of topological electronic materials , 2018, Nature.

[42]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[43]  Awad Aubad,et al.  Towards a framework building for social systems modelling , 2020 .

[44]  P. Alam ‘K’ , 2021, Composites Engineering.

[45]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[46]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[47]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.