Temporal Occupancy Grid for mobile robot dynamic environment mapping

Mapping dynamic environments is an open issue in the field of robotics. In this paper, we extend the well known Occupancy Grid structure to address the problem of generating valid maps for dynamic indoor environments. We propose a spatiotemporal access method to store all sensor values (instead of preserving only one value for each cell as in the common occupancy grid case). By searching for similar time series, we can detect moving objects that appear only in a limited number of possible configurations (e.g. doors or chairs). Simulated experiments demonstrate the potentialities of the proposed system.

[1]  Beng Chin Ooi,et al.  B-trees: Bearing Fruits of All Kinds , 2002, Australasian Database Conference.

[2]  Sebastian Thrun,et al.  Detecting and modeling doors with mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[3]  Wolfram Burgard,et al.  Position Estimation for Mobile Robots in Dynamic Environments , 1998, AAAI/IAAI.

[4]  Vassilis J. Tsotras,et al.  Comparison of access methods for time-evolving data , 1999, CSUR.

[5]  Wolfram Burgard,et al.  Mobile Robot Mapping and Localization in Non-Static Environments , 2005, AAAI.

[6]  Wolfram Burgard,et al.  Map building with mobile robots in dynamic environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  Eugene Fink,et al.  Indexing of Compressed Time Series , 2004 .

[8]  George Q. Huang,et al.  A New Solution to Map Dynamic Indoor Environments , 2006 .

[9]  Sebastian Thrun,et al.  Learning Hierarchical Object Maps of Non-Stationary Environments with Mobile Robots , 2002, UAI.

[10]  Gaurav S. Sukhatme,et al.  Online simultaneous localization and mapping in dynamic environments , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[11]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[12]  Yun-tao Qian,et al.  Markov model based time series similarity measuring , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[13]  Sebastian Thrun,et al.  A probabilistic technique for simultaneous localization and door state estimation with mobile robots in dynamic environments , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[15]  Maja J. Mataric,et al.  Temporal occupancy grids: a method for classifying the spatio-temporal properties of the environment , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[17]  Wolfram Burgard,et al.  Tracking multiple moving targets with a mobile robot using particle filters and statistical data association , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[18]  Ramez Elmasri,et al.  The Time Index: An Access Structure for Temporal Data , 1990, VLDB.

[19]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..