Building Thinking Machines by Solving Animal Cognition Tasks

[1]  M. Bethge,et al.  Shortcut learning in deep neural networks , 2020, Nature Machine Intelligence.

[2]  Marcin Andrychowicz,et al.  Solving Rubik's Cube with a Robot Hand , 2019, ArXiv.

[3]  Murray Shanahan,et al.  Reconciling deep learning with symbolic artificial intelligence: representing objects and relations , 2019, Current Opinion in Behavioral Sciences.

[4]  Igor Mordatch,et al.  Emergent Tool Use From Multi-Agent Autocurricula , 2019, ICLR.

[5]  Murray Shanahan,et al.  The Animal-AI Environment: Training and Testing Animal-Like Artificial Cognition , 2019, ArXiv.

[6]  David Lopez-Paz,et al.  Invariant Risk Minimization , 2019, ArXiv.

[7]  Karen A. Cerulo Embodied Cognition , 2019, The Oxford Handbook of Cognitive Sociology.

[8]  Katja Hofmann,et al.  The MineRL Competition on Sample Efficient Reinforcement Learning using Human Priors , 2019, ArXiv.

[9]  Marta Halina,et al.  Apply rich psychological terms in AI with care , 2019, Nature Machine Intelligence.

[10]  Benjamin Recht,et al.  Do ImageNet Classifiers Generalize to ImageNet? , 2019, ICML.

[11]  J. Togelius,et al.  Obstacle Tower: A Generalization Challenge in Vision, Control, and Planning , 2019, IJCAI.

[12]  Pei Wang,et al.  On Defining Artificial Intelligence , 2019, J. Artif. Gen. Intell..

[13]  Taehoon Kim,et al.  Quantifying Generalization in Reinforcement Learning , 2018, ICML.

[14]  J. Lind What can associative learning do for planning? , 2018, Royal Society Open Science.

[15]  Marwan Mattar,et al.  Unity: A General Platform for Intelligent Agents , 2018, ArXiv.

[16]  D. Povinelli,et al.  Meta-analytic techniques reveal that corvid causal reasoning in the Aesop’s Fable paradigm is driven by trial-and-error learning , 2018, Animal Cognition.

[17]  Mikio Akagi Rethinking the problem of cognition , 2018, Synthese.

[18]  Mélanie Frappier,et al.  The Book of Why: The New Science of Cause and Effect , 2018, Science.

[19]  H. Francis Song,et al.  Machine Theory of Mind , 2018, ICML.

[20]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[21]  Martin Schmelz,et al.  Cognitive test batteries in animal cognition research: evaluating the past, present and future of comparative psychometrics , 2017, Animal Cognition.

[22]  Razvan Pascanu,et al.  Imagination-Augmented Agents for Deep Reinforcement Learning , 2017, NIPS.

[23]  J. Bermúdez Can Nonlinguistic Animals think about Thinking , 2017 .

[24]  Kristin Andrews,et al.  The Routledge Handbook of Philosophy of Animal Minds , 2017 .

[25]  Daniel Williams Predictive Processing and the Representation Wars , 2017, Minds and Machines.

[26]  Magnus Enquist,et al.  Memory for stimulus sequences: a divide between humans and other animals? , 2017, Royal Society Open Science.

[27]  Shane Legg,et al.  DeepMind Lab , 2016, ArXiv.

[28]  Katja Hofmann,et al.  The Malmo Platform for Artificial Intelligence Experimentation , 2016, IJCAI.

[29]  Julian N. Marewski,et al.  What can the brain teach us about building artificial intelligence? , 2016, Behavioral and Brain Sciences.

[30]  Mathias Osvath,et al.  The string-pulling paradigm in comparative psychology. , 2015, Journal of comparative psychology.

[31]  Marc G. Bellemare,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[32]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[33]  Cameron Buckner A property cluster theory of cognition , 2015 .

[34]  A. Clark Predicting Peace: The End of the Representation Wars , 2015 .

[35]  C. Allen Models, Mechanisms, and Animal Minds , 2014 .

[36]  Allison M. Barnard,et al.  The evolution of self-control , 2014, Proceedings of the National Academy of Sciences.

[37]  Alex H. Taylor,et al.  Using the Aesop's Fable Paradigm to Investigate Causal Understanding of Water Displacement by New Caledonian Crows , 2014, PloS one.

[38]  Marc G. Bellemare,et al.  The Arcade Learning Environment: An Evaluation Platform for General Agents , 2012, J. Artif. Intell. Res..

[39]  A. Tate A measure of intelligence , 2012 .

[40]  Giorgio Vallortigara,et al.  Intuitive physical reasoning about occluded objects by inexperienced chicks , 2011, Proceedings of the Royal Society B: Biological Sciences.

[41]  Diane Proudfoot,et al.  Anthropomorphism and AI: Turingʼs much misunderstood imitation game , 2011, Artif. Intell..

[42]  Karl J. Friston,et al.  Action understanding and active inference , 2011, Biological Cybernetics.

[43]  Frederick Adams,et al.  Why we still need a mark of the cognitive , 2010, Cognitive Systems Research.

[44]  Lawrence A. Shapiro Embodied Cognition: Lessons from Linguistic Determinism , 2010 .

[45]  Christian Rutz,et al.  Tool use by wild New Caledonian crows Corvus moneduloides at natural foraging sites , 2010, Proceedings of the Royal Society B: Biological Sciences.

[46]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Gary Roberts,et al.  Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer , 2008 .

[48]  Derek C. Penn,et al.  Darwin's mistake: Explaining the discontinuity between human and nonhuman minds , 2008, Behavioral and Brain Sciences.

[49]  Shane Legg,et al.  Universal Intelligence: A Definition of Machine Intelligence , 2007, Minds and Machines.

[50]  Derek C. Penn,et al.  On the lack of evidence that non-human animals possess anything remotely resembling a ‘theory of mind’ , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  M. Beran Maintenance of Self-Imposed Delay of Gratification by Four Chimpanzees (Pan troglodytes) and an Orangutan (Pongo pygmaeus) , 2002, The Journal of general psychology.

[52]  J. Hernández-Orallo Beyond the Turing Test , 2000, J. Log. Lang. Inf..

[53]  Marcus Hutter,et al.  A Theory of Universal Artificial Intelligence based on Algorithmic Complexity , 2000, ArXiv.

[54]  S. Carey The Origin of Concepts , 2000 .

[55]  R. Hughes,et al.  Algorithmic behaviour and spatial memory are used by two intertidal fish species to solve the radial maze , 1999, Animal Behaviour.

[56]  Stevan Harnad,et al.  Other bodies, other minds: A machine incarnation of an old philosophical problem , 1991, Minds and Machines.

[57]  Hans P. Moravec Mind Children: The Future of Robot and Human Intelligence , 1988 .

[58]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[59]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[60]  Murray Shanahan,et al.  The Animal-AI Testbed and Competition , 2019, NeurIPS.

[61]  M. Tomasello,et al.  Cognition : The Cultural Intelligence Hypothesis Humans Have Evolved Specialized Skills of Social , 2008 .

[62]  Daniel C. Dennett,et al.  Can Machines Think , 2004 .

[63]  S. Shettleworth Cognition, evolution, and behavior , 1998 .

[64]  T. Malim,et al.  Introduction Comparative psychology , 1998 .

[65]  C. Goodhart Problems of Monetary Management: The UK Experience , 1984 .

[66]  N. Block Psychologism and Behaviorism , 1981 .

[67]  C. Lloyd Morgan An introduction to comparative psychology , 1900 .

[68]  Julian Togelius,et al.  Ieee Transactions on Computational Intelligence and Ai in Games the 2014 General Video Game Playing Competition , 2022 .