Bioplausible multiscale filtering in retino-cortical processing as a mechanism in perceptual grouping

AbstractWhy does our visual system fail to reconstruct reality, when we look at certain patterns? Where do Geometrical illusions start to emerge in the visual pathway? How far should we take computational models of vision with the same visual ability to detect illusions as we do? This study addresses these questions, by focusing on a specific underlying neural mechanism involved in our visual experiences that affects our final perception. Among many types of visual illusion, ‘Geometrical’ and, in particular, ‘Tilt Illusions’ are rather important, being characterized by misperception of geometric patterns involving lines and tiles in combination with contrasting orientation, size or position. Over the last decade, many new neurophysiological experiments have led to new insights as to how, when and where retinal processing takes place, and the encoding nature of the retinal representation that is sent to the cortex for further processing. Based on these neurobiological discoveries, we provide computer simulation evidence from modelling retinal ganglion cells responses to some complex Tilt Illusions, suggesting that the emergence of tilt in these illusions is partially related to the interaction of multiscale visual processing performed in the retina. The output of our low-level filtering model is presented for several types of Tilt Illusion, predicting that the final tilt percept arises from multiple-scale processing of the Differences of Gaussians and the perceptual interaction of foreground and background elements. The model is a variation of classical receptive field implementation for simple cells in early stages of vision with the scales tuned to the object/texture sizes in the pattern. Our results suggest that this model has a high potential in revealing the underlying mechanism connecting low-level filtering approaches to mid- and high-level explanations such as ‘Anchoring theory’ and ‘Perceptual grouping’.

[1]  Zhong-Lin Lu,et al.  Scale-invariance in brightness illusions implicates object-level visual processing , 2014, Scientific Reports.

[2]  N. Carlson Psychology: The Science of Behavior , 1987 .

[3]  F. Zöllner Ueber eine neue Art von Pseudoskopie und ihre Beziehungen zu den von Plateau und Oppel beschriebenen Bewegungsphänomenen , 1860 .

[4]  Arthur G Shapiro,et al.  Separating color from color contrast. , 2008, Journal of vision.

[5]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[6]  L. A. N. Esq.,et al.  LXI. Observations on some remarkable optical phænomena seen in Switzerland; and on an optical phænomenon which occurs on viewing a figure of a crystal or geometrical solid , 1832 .

[7]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  P. Lennie The physiological basis of variations in visual latency , 1981, Vision Research.

[9]  H. Barlow,et al.  Selective Sensitivity to Direction of Movement in Ganglion Cells of the Rabbit Retina , 1963, Science.

[10]  C. H. Graham Mach Bands: Quantitative Studies on Neural Networks in the Retina. Floyd Ratliff. Holden-Day, San Francisco, 1965. xiv + 365 pp. Illus. $13.95 , 1965 .

[11]  Tony Lindeberg,et al.  Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space , 2011, Journal of Mathematical Imaging and Vision.

[12]  Robert E. Briscoe,et al.  Perceiving the Present: Systematization of Illusions or Illusion of Systematization? , 2010, Cogn. Sci..

[13]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[14]  H. Helmholtz Handbuch der physiologischen Optik , 2015 .

[15]  E. G. Heinemann,et al.  Simultaneous brightness induction as a function of inducing and test-field luminances. , 1955, Journal of experimental psychology.

[16]  J. R. Pomerantz,et al.  A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. , 2012, Psychological bulletin.

[17]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[18]  V. Bruce,et al.  Visual Perception: Physiology, Psychology and Ecology , 1985 .

[19]  W. Wundt Die geometrisch-optischen Täuschungen , 1898 .

[20]  R. Penrose,et al.  Impossible objects: a special type of visual illusion. , 1958, British journal of psychology.

[21]  T. Lindeberg,et al.  Foveal scale-space and the linear increase of receptive field size as a function of eccentricity , 1994 .

[22]  B. Anderson A Theory of Illusory Lightness and Transparency in Monocular and Binocular Images: The Role of Contour Junctions , 1997, Perception.

[23]  S. Grossberg,et al.  Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena , 1988, Perception & psychophysics.

[24]  R. Young GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .

[25]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[26]  T. Cowan Turning a penrose triangle inside out , 1982 .

[27]  S. Draper The Penrose Triangle and a Family of Related Figures , 1978, Perception.

[28]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[29]  Takashi Yamauchi,et al.  Explaining Low-Level Brightness-Contrast Illusions Using Disinhibition , 2004, BioADIT.

[30]  Xavier Otazu,et al.  A Neurodynamical Model of Brightness Induction in V1 , 2013, PloS one.

[31]  A. Wright The origins of Penrose diagrams in physics, art, and the psychology of perception, 1958-62. , 2013, Endeavour.

[32]  Baingio Pinna,et al.  Contrast Polarities Determine the Direction of Café Wall Tilts , 2004, Perception.

[33]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[34]  E. Callaway Structure and function of parallel pathways in the primate early visual system , 2005, The Journal of physiology.

[35]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[36]  A. Gilchrist,et al.  An anchoring theory of lightness perception. , 1999, Psychological review.

[37]  L. Spillmann,et al.  Beyond the classical receptive field: The effect of contextual stimuli. , 2015, Journal of vision.

[38]  Sandip Sarkar,et al.  A possible explanation of the low-level brightness–contrast illusions in the light of an extended classical receptive field model of retinal ganglion cells , 2006, Biological Cybernetics.

[39]  Lawrence K. Cormack,et al.  Visual Perception: Physiology, Psychology, and Ecology , 1998 .

[40]  F. Kingdom,et al.  White's effect: A dual mechanism , 1989, Vision Research.

[41]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[42]  W. James,et al.  The Principles of Psychology. , 1983 .

[43]  R. Linsenmeier,et al.  Effects of picrotoxin and strychnine on non‐linear responses of Y‐type cat retinal ganglion cells. , 1982, The Journal of physiology.

[44]  A. Gilchrist,et al.  An anchoring theory of lightness perception. , 1999 .

[45]  Frederick A.A. Kingdom,et al.  Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy , 2011, Vision Research.

[46]  I. Ohzawa,et al.  Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features. , 2009, Journal of neurophysiology.

[47]  J. Fraser,et al.  A NEW VISUAL ILLUSION OF DIRECTION , 1908 .

[48]  Michael Bach,et al.  The Necker cube—an ambiguous figure disambiguated in early visual processing , 2005, Vision Research.

[49]  D. Eagleman Visual illusions and neurobiology , 2001, Nature Reviews Neuroscience.

[50]  Alan E. Robinson,et al.  Explaining brightness illusions using spatial filtering and local response normalization , 2007, Vision Research.

[51]  R A Young,et al.  The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.

[52]  S. Palmer,et al.  A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. , 2012, Psychological bulletin.

[53]  Sandip Sarkar,et al.  Understanding image structure from a new multi-scale representation of higher order derivative filters , 2007, Image Vis. Comput..

[54]  M. McCourt,et al.  Similar mechanisms underlie simultaneous brightness contrast and grating induction , 1997, Vision Research.

[55]  The tilt-constancy theory of visual illusions. , 2001 .

[56]  Stéphane Mallat,et al.  Wavelets for a vision , 1996, Proc. IEEE.

[57]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[58]  M. Vanrell,et al.  Multiresolution wavelet framework models brightness induction effects , 2008, Vision Research.

[59]  Gerald Westheimer,et al.  Irradiation, Border Location, and the Shifted-Chessboard Pattern , 2007, Perception.

[60]  David M. W. Powers,et al.  A Quantitative Analysis of Tilt in the Café Wall Illusion: A Bioplausible Model for Foveal and Peripheral Vision , 2016, 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[61]  L. Hermann,et al.  Eine Erscheinung simultanen Contrastes , 1870, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[62]  W Prinzmetal,et al.  The tilt-constancy theory of visual illusions. , 2001, Journal of experimental psychology. Human perception and performance.

[63]  M. White,et al.  A New Effect of Pattern on Perceived Lightness , 1979, Perception.

[64]  F. Kingdom,et al.  A multi-channel approach to brightness coding , 1992, Vision Research.

[65]  Baingio Pinna,et al.  Last but Not Least , 2001 .

[66]  David M. W. Powers,et al.  A Bioplausible Model for Explaining Café Wall Illusion: Foveal vs. Peripheral Resolution , 2016, ISVC.

[67]  Ennio Mingolla,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985 .

[68]  M. McCourt A spatial frequency dependent grating-induction effect , 1982, Vision Research.

[69]  Phil Q. Jin,et al.  The role of spatial frequency in color induction , 2001, Vision Research.

[70]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[71]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[72]  Alexander D Logvinenko,et al.  Hering's and Helmholtz's types of simultaneous lightness contrast. , 2004, Journal of vision.

[73]  Steven B. Smith,et al.  Digital Signal Processing: A Practical Guide for Engineers and Scientists , 2002 .

[74]  Yong Xu,et al.  Scale-space texture description on SIFT-like textons , 2012, Comput. Vis. Image Underst..

[75]  A. Kitaoka,et al.  Aesthetic valence of visual illusions , 2012, i-Perception.

[76]  H. Wallach,et al.  The perception of neutral colors. , 1963, Scientific American.

[77]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[78]  V. Ramachandran,et al.  Illusory Displacement of Equiluminous Kinetic Edges , 1990, Perception.

[79]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[80]  M. Carandini Receptive fields and suppressive fields in the early visual system , 2004 .

[81]  Ryota Kanai,et al.  Perceiving the Present and a Systematization of Illusions , 2008, Cogn. Sci..

[82]  Vivian O'Brien,et al.  Contour Perception, Illusion and Reality* , 1958 .

[83]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[84]  Hao Sun,et al.  The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings , 2004, Vision Research.

[85]  Akiyoshi Kitaoka,et al.  Apparent Contraction of Edge Angles , 1998, Perception.

[86]  Akiyoshi Kitaoka,et al.  Tilt illusions after Oyama (1960): A review1 , 2007 .

[87]  F. Werblin,et al.  Rapid global shifts in natural scenes block spiking in specific ganglion cell types , 2003, Nature Neuroscience.

[88]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[89]  Hitoshi Arai,et al.  A Nonlinear Model of Visual Information Processing Based on Discrete Maximal Overlap Wavelets , 2005 .

[90]  M. McCourt,et al.  A multiscale spatial filtering account of the Wertheimer–Benary effect and the corrugated Mondrian , 2001, Vision Research.

[91]  Sandip Sarkar,et al.  A possible mechanism of stochastic resonance in the light of an extra-classical receptive field model of retinal ganglion cells , 2009, Biological Cybernetics.

[92]  Trent W. Lewis,et al.  Quantitative Analysis of a Bioplausible Model of Misperception of Slope in the Café Wall Illusion , 2016, ACCV Workshops.

[93]  E. Adelson 24 Lightness Perception and Lightness Illusions , 2022 .

[94]  Brett Andre Susan Overcoming the Penrose Stairs of history: the legislated treatment of the 'designated groups' within a hierarchy of discrimination approach , 2015 .

[95]  Jacques Ninio,et al.  Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them , 2014, Front. Hum. Neurosci..

[96]  S. Dakin,et al.  Natural image statistics mediate brightness ‘filling in’ , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[97]  Ana Radonjić,et al.  Functional frameworks of illumination revealed by probe disk technique. , 2010, Journal of vision.

[98]  J. Frisby,et al.  Illusory Contours: Curious Cases of Simultaneous Brightness Contrast? , 1975 .

[99]  Akiyoshi Kitaoka,et al.  Phenomenal characteristics of the peripheral drift illusion , 2003 .

[100]  M. Rudd,et al.  The highest luminance anchoring rule in achromatic color perception: some counterexamples and an alternative theory. , 2005, Journal of vision.

[101]  D. Knill,et al.  Apparent surface curvature affects lightness perception , 1991, Nature.

[102]  R. Nijhawan,et al.  Neural delays, visual motion and the flash-lag effect , 2002, Trends in Cognitive Sciences.

[103]  D. Todorović Lightness and Junctions , 1997, Perception.

[104]  M. McCourt,et al.  A Multiscale Spatial Filtering Account of Brightness Phenomena , 2003 .

[105]  Sutthiphong Srigrarom Dynamics of isolated columnar vortex in tube with sinusoidal cross-section , 2005, J. Vis..

[106]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[107]  L. Pessoa,et al.  Mach Bands: How Many Models are Possible? Recent Experimental Findings and Modeling Attempts , 1996, Vision Research.

[108]  Narendra Ahuja,et al.  Extraction of early perceptual structure in dot patterns: Integrating region, boundary, and component gestalt , 1989, Comput. Vis. Graph. Image Process..

[109]  M. McCourt,et al.  A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization , 2004, Vision Research.

[110]  S Grossberg,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985, Perception & psychophysics.

[111]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[112]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[113]  Wolfgang Sanz,et al.  Laser-optical investigation of stator-rotor interaction in a transonic turbine , 2006, J. Vis..

[114]  H. Barlow,et al.  Evidence for a Physiological Explanation of the Waterfall Phenomenon and Figural After-effects , 1963, Nature.

[115]  M. J. Morgan,et al.  The Münsterberg figure and twisted cords , 1986, Vision Research.

[116]  Gerald Westheimer,et al.  Illusions in the spatial sense of the eye: Geometrical–optical illusions and the neural representation of space , 2008, Vision Research.

[117]  D. Jameson,et al.  Opponent-Colours Theory in the Light of Physiological Findings , 1985 .

[118]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985, Psychological review.

[119]  Wenzhi Sun,et al.  Identification of ON–OFF direction‐selective ganglion cells in the mouse retina , 2005, The Journal of physiology.

[120]  E. Callaway,et al.  Parallel colour-opponent pathways to primary visual cortex , 2003, Nature.

[121]  F. Zöllner,et al.  Ueber eine neue Art anorthoskopischer Zerrbilder , 1862 .

[122]  Mark A Changizi,et al.  Latency Correction Explains the Classical Geometrical Illusions , 2002, Perception.

[123]  R. Gregory,et al.  Border Locking and the Café Wall Illusion , 1979, Perception.

[124]  Tino Lourens,et al.  Modeling Retinal High and Low Contrast Sensitivity Filters , 1995, IWANN.

[125]  Trent W. Lewis,et al.  Bioplausible Multiscale Filtering in Retinal to Cortical Processing as a Model of Computer Vision , 2015, ICAART.

[126]  M. McCourt Brightness Induction and the Café Wall Illusion , 1983, Perception.

[127]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[128]  Paul R. Martin,et al.  Colour processing in the primate retina: recent progress , 1998, The Journal of physiology.

[129]  A. Gilchrist,et al.  Anchoring versus spatial filtering accounts of simultaneous lightness contrast. , 2007, Journal of vision.

[130]  L. Spillmann,et al.  Long-range interactions in visual perception , 1996, Trends in Neurosciences.

[131]  C. Enroth-Cugell,et al.  Effects of Remote Stimulation on the Mean Firing Rate of Cat Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[132]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[133]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[134]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[135]  D. Jameson,et al.  Mach bands : quantitative studies on neural networks in the retina , 1966 .

[136]  M. McCourt,et al.  A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction , 1999, Vision Research.

[137]  K. A. Stevens,et al.  Differential contributions of circular and elongated spatial filters to the Café Wall illusion , 1989, Biological Cybernetics.

[138]  Mariann Hudák,et al.  Changing the Chevreul Illusion by a Background Luminance Ramp: Lateral Inhibition Fails at Its Traditional Stronghold - A Psychophysical Refutation , 2011, PloS one.

[139]  Bidyut Baran Chaudhuri,et al.  A survey of Hough Transform , 2015, Pattern Recognit..

[140]  E. Swift A New Visual Illusion of Direction. , 2022 .

[141]  Joachim P Sturmberg The illusion of certainty--a deluded perception? , 2011, Journal of evaluation in clinical practice.

[142]  George Sperling,et al.  Second-order illusions: Mach bands, chevreul, and Craik-O'Brien-Cornsweet , 1996, Vision Research.

[143]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985 .

[144]  Trent W. Lewis,et al.  A Neurophysiological model for geometric visual illusions , 2013 .

[145]  Kevin R. Brooks,et al.  An exponential filter model predicts lightness illusions , 2015, Front. Hum. Neurosci..

[146]  E. Adelson Perceptual organization and the judgment of brightness. , 1993, Science.

[147]  A. H. Pierce Die verschobene Schachbrettfigur. , 2022 .

[148]  Zhong-Lin Lu,et al.  Relative Brightness in Natural Images Can Be Accounted for by Removing Blurry Content , 2011, Psychological science.

[149]  P. Bressan The place of white in a world of grays: a double-anchoring theory of lightness perception. , 2006, Psychological review.

[150]  W. D. Ross,et al.  Lightness from contrast: A selective integration model , 2000, Perception & psychophysics.

[151]  Philip J. Kellman,et al.  Interpolation processes in the visual perception of objects , 2003, Neural Networks.

[152]  R. von der Heydt,et al.  A neural model of figure-ground organization. , 2007, Journal of neurophysiology.

[153]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[154]  L. Spillmann,et al.  Visual Perception: The Neurophysiological Foundations , 1989 .

[155]  P. Roelfsema Cortical algorithms for perceptual grouping. , 2006, Annual review of neuroscience.

[156]  K Aoki,et al.  Progress of visualization , 2001 .

[157]  Joachim P. Sturmberg Mbbs Doracog Mfm PhD Fracgp The illusion of certainty – a deluded perception? , 2011 .

[158]  A. Fiorentini Mach Band Phenomena , 1972 .

[159]  S. Mangel,et al.  Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. , 1991, The Journal of physiology.

[160]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[161]  C. Enroth-Cugell,et al.  Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements , 1982, Vision Research.

[162]  Steven Yantis Sensation and Perception , 2013 .

[163]  A. Logvinenko,et al.  Is Lightness Induction a Pictorial Illusion? , 2002, Perception.

[164]  R. Gregory,et al.  Knowledge in perception and illusion. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[165]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[166]  V. Schmidt,et al.  Visualization of high speed phenomena during the ignition transient of a LOX/GH2 coaxial injected spray , 2002 .

[167]  S. J. Maskell,et al.  Fraser Cords and Reversal of the Café Wall Illusion , 1993, Perception.

[168]  Sandip Sarkar,et al.  The Theory of Edge Detection and Low-level Vision in Retrospect , 2007 .

[169]  Laurent Jacques,et al.  A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity , 2011, Signal Process..

[170]  Jonathan Winawer,et al.  Image segmentation and lightness perception , 2005, Nature.

[171]  Xoana G. Troncoso,et al.  Novel Visual Illusions Related to Vasarely's ‘Nested Squares’ Show That Corner Salience Varies with Corner Angle , 2005, Perception.

[172]  William Dillard Orbison,et al.  Shape as a Function of the Vector-Field , 1939 .

[173]  A. Yahya,et al.  Characteristic region based image steganography using Speeded-Up Robust Features technique , 2012, 2012 International Conference on Future Communication Networks.

[174]  Kazushi Maruya,et al.  Reversed Café Wall illusion with missing fundamental gratings , 2006, Vision Research.

[175]  H. Barlow,et al.  The effects of remote retinal stimulation on the responses of cat retinal ganglion cells. , 1977, The Journal of physiology.

[176]  S. W. Kuffler Neurons in the retina; organization, inhibition and excitation problems. , 1952, Cold Spring Harbor symposia on quantitative biology.

[177]  G. Adler Psychology: The Science of Behaviour , 2002 .

[178]  A. H. Pierce The illusion of the kindergarten patterns. , 1898 .

[179]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[180]  C. Fermüller,et al.  Uncertainty in visual processes predicts geometrical optical illusions , 2004, Vision Research.

[181]  B Moulden,et al.  The Münsterberg Illusion and ‘Irradiation’ , 1979, Perception.