Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data

[1]  Santiago Segarra,et al.  A stable betweenness centrality measure in networks , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  Kay Jann,et al.  Repeatability Analysis of Global and Local Metrics of Brain Structural Networks , 2014, Brain Connect..

[3]  C. Montag,et al.  Assessing the function of the fronto‐parietal attention network: Insights from resting‐state fMRI and the attentional network test , 2014, Human brain mapping.

[4]  Javier M. Buldú,et al.  Reconstructing functional brain networks: have we got the basics right? , 2014, Front. Hum. Neurosci..

[5]  Eric Thouvenot,et al.  An MRI review of acquired corpus callosum lesions , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[6]  Mark E. Bastin,et al.  Test–retest reliability of structural brain networks from diffusion MRI , 2014, NeuroImage.

[7]  Cedric E. Ginestet,et al.  Statistical network analysis for functional MRI: summary networks and group comparisons , 2013, Front. Comput. Neurosci..

[8]  W. El-Deredy,et al.  Reconstructing Coherent Networks from Electroencephalography and Magnetoencephalography with Reduced Contamination from Volume Conduction or Magnetic Field Spread , 2013, PloS one.

[9]  Yong He,et al.  Assessment of system dysfunction in the brain through MRI-based connectomics , 2013, The Lancet Neurology.

[10]  Paul J. Laurienti,et al.  A permutation testing framework to compare groups of brain networks , 2013, Front. Comput. Neurosci..

[11]  Paul J. Laurienti,et al.  Defining nodes in complex brain networks , 2013, Front. Comput. Neurosci..

[12]  R. Kakigi,et al.  Task-Related Changes in Functional Properties of the Human Brain Network Underlying Attentional Control , 2013, PloS one.

[13]  Michael Breakspear,et al.  Graph analysis of the human connectome: Promise, progress, and pitfalls , 2013, NeuroImage.

[14]  Jean-Philippe Thiran,et al.  Structural connectomics in brain diseases , 2013, NeuroImage.

[15]  Kevin Murphy,et al.  Resting-state fMRI confounds and cleanup , 2013, NeuroImage.

[16]  M. Catani,et al.  Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true‐tract specific index to characterize white matter diffusion , 2013, Human brain mapping.

[17]  Dinggang Shen,et al.  Application of neuroanatomical features to tractography clustering , 2013, Human brain mapping.

[18]  C. Stam,et al.  Alzheimer's disease: connecting findings from graph theoretical studies of brain networks , 2013, Neurobiology of Aging.

[19]  Yong He,et al.  Probabilistic Diffusion Tractography and Graph Theory Analysis Reveal Abnormal White Matter Structural Connectivity Networks in Drug-Naive Boys with Attention Deficit/Hyperactivity Disorder , 2013, The Journal of Neuroscience.

[20]  Paul J. Laurienti,et al.  An exploration of graph metric reproducibility in complex brain networks , 2013, Front. Neurosci..

[21]  Timothy P. L. Roberts,et al.  Test-Retest Reliability of Computational Network Measurements Derived from the Structural Connectome of the Human Brain , 2013, Brain Connect..

[22]  James R. Booth,et al.  Changes in Task-Related Functional Connectivity across Multiple Spatial Scales Are Related to Reading Performance , 2013, PloS one.

[23]  Lutz Jäncke,et al.  The Problem of Thresholding in Small-World Network Analysis , 2013, PloS one.

[24]  Paul L. Rosin,et al.  A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data , 2013, NeuroImage.

[25]  Paul M. Thompson,et al.  Test-Retest Reliability of Graph Theory Measures of Structural Brain Connectivity , 2012, MICCAI.

[26]  Nadim Joni Shah,et al.  Human cortical connectome reconstruction from diffusion weighted MRI: The effect of tractography algorithm , 2012, NeuroImage.

[27]  Fumiko Hoeft,et al.  GAT: A Graph-Theoretical Analysis Toolbox for Analyzing Between-Group Differences in Large-Scale Structural and Functional Brain Networks , 2012, PloS one.

[28]  Leonardo Bonilha,et al.  Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[29]  S. Swinnen,et al.  Altered structural networks and executive deficits in traumatic brain injury patients , 2012, Brain Structure and Function.

[30]  Mingrui Xia,et al.  Magnetic Resonance Imaging and Graph Theoretical Analysis of Complex Brain Networks in Neuropsychiatric Disorders , 2011, Brain Connect..

[31]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[32]  Alan C. Evans,et al.  Brain Connectivity , 2011, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[33]  Neda Bernasconi,et al.  Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. , 2011, Cerebral cortex.

[34]  Xiaoqi Huang,et al.  Disrupted Brain Connectivity Networks in Drug-Naive, First-Episode Major Depressive Disorder , 2011, Biological Psychiatry.

[35]  Julia P. Owen,et al.  Removal of Spurious Coherence in MEG Source-Space Coherence Analysis , 2011, IEEE Transactions on Biomedical Engineering.

[36]  Maxime Descoteaux,et al.  Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.

[37]  J. Maldjian,et al.  Effect of resting-state functional MR imaging duration on stability of graph theory metrics of brain network connectivity. , 2011, Radiology.

[38]  Jeffrey R Petrella,et al.  Use of graph theory to evaluate brain networks: a clinical tool for a small world? , 2011, Radiology.

[39]  Thomas E. Nichols,et al.  Brain Network Analysis: Separating Cost from Topology Using Cost-Integration , 2011, PloS one.

[40]  Jan Sijbers,et al.  Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution , 2011, Human brain mapping.

[41]  Danielle S. Bassett,et al.  Conserved and variable architecture of human white matter connectivity , 2011, NeuroImage.

[42]  F. Happé,et al.  Connectivity and the corpus callosum in autism spectrum conditions: insights from comparison of autism and callosal agenesis. , 2011, Progress in brain research.

[43]  Eugene S. Edgington,et al.  Randomization Tests , 2011, International Encyclopedia of Statistical Science.

[44]  Paul M. Thompson,et al.  Altered Structural Brain Connectivity in Healthy Carriers of the Autism Risk Gene, CNTNAP2 , 2011, Brain Connect..

[45]  Edward T. Bullmore,et al.  Network-based statistic: Identifying differences in brain networks , 2010, NeuroImage.

[46]  R. Kahn,et al.  Aberrant Frontal and Temporal Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis , 2010, The Journal of Neuroscience.

[47]  Andreas Daffertshofer,et al.  Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory , 2010, PloS one.

[48]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[49]  Jacobus F. A. Jansen,et al.  The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures , 2010, NeuroImage.

[50]  Derek K. Jones Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI , 2010 .

[51]  Fabrice Bartolomei,et al.  Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks , 2010, Magnetic Resonance Materials in Physics, Biology and Medicine.

[52]  C. Caltagirone,et al.  In vivo structural neuroanatomy of corpus callosum in Alzheimer's disease and mild cognitive impairment using different MRI techniques: a review. , 2010, Journal of Alzheimer's disease : JAD.

[53]  Yong He,et al.  Graph-based network analysis of resting-state functional MRI. , 2010 .

[54]  Richard M. Leahy,et al.  Identifying true cortical interactions in MEG using the nulling beamformer , 2010, NeuroImage.

[55]  Giuseppe Scotti,et al.  A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution , 2010, NeuroImage.

[56]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[57]  Alan C. Evans,et al.  Age- and Gender-Related Differences in the Cortical Anatomical Network , 2009, The Journal of Neuroscience.

[58]  W. M. van der Flier,et al.  Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory , 2009, BMC Neuroscience.

[59]  G. Pipa,et al.  Using transfer entropy to measure the patterns of information flow though cortex: application to MEG recordings from a visual Simon task , 2009, BMC Neuroscience.

[60]  S. Rombouts,et al.  Hierarchical functional modularity in the resting‐state human brain , 2009, Human brain mapping.

[61]  R. Kahn,et al.  Efficiency of Functional Brain Networks and Intellectual Performance , 2009, The Journal of Neuroscience.

[62]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[63]  Tore Opsahl,et al.  Clustering in weighted networks , 2009, Soc. Networks.

[64]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[65]  C. Stam,et al.  Small‐world properties of nonlinear brain activity in schizophrenia , 2009, Human brain mapping.

[66]  Edward T. Bullmore,et al.  Age-related changes in modular organization of human brain functional networks , 2009, NeuroImage.

[67]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[68]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[69]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[70]  N. Laskaris,et al.  Characterizing Dynamic Functional Connectivity Across Sleep Stages from EEG , 2009, Brain Topography.

[71]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[72]  Alan C. Evans,et al.  Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. , 2008, Cerebral cortex.

[73]  Carlo Pierpaoli,et al.  Comparison of EPI Distortion Correction Methods in Diffusion Tensor MRI Using a Novel Framework , 2008, MICCAI.

[74]  C. Stam,et al.  The functional connectivity of different EEG bands moves towards small-world network organization during sleep , 2008, Clinical Neurophysiology.

[75]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[76]  Klaus Lehnertz,et al.  Evolving functional network properties and synchronizability during human epileptic seizures. , 2008, Chaos.

[77]  Derek K. Jones Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap With Diffusion Tensor MRI , 2008, IEEE Transactions on Medical Imaging.

[78]  R. Fields,et al.  White matter in learning, cognition and psychiatric disorders , 2008, Trends in Neurosciences.

[79]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[80]  K. Gurney,et al.  Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence , 2008, PloS one.

[81]  C. Stam,et al.  Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources , 2007, Human brain mapping.

[82]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[83]  Cornelis J Stam,et al.  Graph theoretical analysis of complex networks in the brain , 2007, Nonlinear biomedical physics.

[84]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[85]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[86]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[87]  O. Sporns,et al.  Structural Determinants of Functional Brain Dynamics , 2007 .

[88]  E. Bullmore,et al.  Adaptive reconfiguration of fractal small-world human brain functional networks , 2006, Proceedings of the National Academy of Sciences.

[89]  C. Stam,et al.  Disturbed functional connectivity in brain tumour patients: Evaluation by graph analysis of synchronization matrices , 2006, Clinical Neurophysiology.

[90]  Kathleen M. Carley,et al.  On the robustness of centrality measures under conditions of imperfect data , 2006, Soc. Networks.

[91]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[92]  Daniel C. Alexander,et al.  An Introduction to Computational Diffusion MRI: the Diffusion Tensor and Beyond , 2006, Visualization and Processing of Tensor Fields.

[93]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[94]  W. Eric L. Grimson,et al.  Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI , 2005, MICCAI.

[95]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[96]  Alan C. Evans,et al.  Comparing functional connectivity via thresholding correlations and singular value decomposition , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[97]  E. Bullmore,et al.  Undirected graphs of frequency-dependent functional connectivity in whole brain networks , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[98]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[99]  K. Kaski,et al.  Intensity and coherence of motifs in weighted complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[101]  M. Hallett,et al.  Identifying true brain interaction from EEG data using the imaginary part of coherency , 2004, Clinical Neurophysiology.

[102]  Thomas W. Valente,et al.  The stability of centrality measures when networks are sampled , 2003, Soc. Networks.

[103]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[104]  Daniel C. Alexander,et al.  Persistent Angular Structure: New Insights from Diffusion MRI Data. Dummy Version , 2003, IPMI.

[105]  G M Innocenti,et al.  Schizophrenia, neurodevelopment and corpus callosum , 2003, Molecular Psychiatry.

[106]  R Mark Henkelman,et al.  Orientational diffusion reflects fiber structure within a voxel , 2002, Magnetic resonance in medicine.

[107]  Martin Suter,et al.  Small World , 2002 .

[108]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[109]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[110]  Mingzhou Ding,et al.  Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance , 2001, Biological Cybernetics.

[111]  Luiz A. Baccalá,et al.  Partial directed coherence: a new concept in neural structure determination , 2001, Biological Cybernetics.

[112]  V. Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[113]  M. Pembrey,et al.  ALSPAC--the Avon Longitudinal Study of Parents and Children. I. Study methodology. , 2001, Paediatric and perinatal epidemiology.

[114]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[115]  R Baumgartner,et al.  Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis. , 2000, Magnetic resonance imaging.

[116]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[117]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[118]  X Hu,et al.  Analysis of functional magnetic resonance imaging data using self‐organizing mapping with spatial connectivity , 1999, Magnetic resonance in medicine.

[119]  Kai-Hsiang Chuang,et al.  Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy C-means , 1999, IEEE Transactions on Medical Imaging.

[120]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[121]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[122]  D. Tucker,et al.  EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. , 1997, Electroencephalography and clinical neurophysiology.

[123]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[124]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[125]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[126]  Karl-Heinz Jockel,et al.  Finite Sample Properties and Asymptotic Efficiency of Monte Carlo Tests , 1986 .

[127]  Béla Bollobás,et al.  Random Graphs , 1985 .

[128]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[129]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[130]  Walter Do,et al.  Coherence as a measure of relationship between EEG records. , 1968 .

[131]  D O Walter,et al.  Coherence as a measure of relationship between EEG records. , 1968, Electroencephalography and clinical neurophysiology.