Convergence rates for steady-state derivative estimators

We describe various derivative estimators for the case of steady-state performance measures and obtain the order of their convergence rates. These estimatorsdo not use explicitly the regenerative structure of the system. Estimators based on infinitesimal perturbation analysis, likelihood ratios, and different kinds of finite-differences are examined. The theoretical results are illustrated via numerical examples.

[1]  P. Heidelberger,et al.  A Renewal Theoretic Approach to Bias Reduction in Regenerative Simulations , 1982 .

[2]  R Y Rubinstein,et al.  The score function approach for sensitivity analysis of computer simulation models , 1986 .

[3]  Xi-Ren Cao Sensitivity estimates based on one realization of a stochastic system , 1987 .

[4]  Yu-Chi Ho,et al.  Performance evaluation and perturbation analysis of discrete event dynamic systems , 1987 .

[5]  Rajan Suri,et al.  Infinitesimal perturbation analysis for general discrete event systems , 1987, JACM.

[6]  Peter W. Glynn,et al.  Likelilood ratio gradient estimation: an overview , 1987, WSC '87.

[7]  Marc S. Meketon,et al.  Optimization in simulation: a survey of recent results , 1987, WSC '87.

[8]  Xi-Ren Cao,et al.  Convergence properties of infinitesimal perturbation analysis , 1988 .

[9]  Paul Glasserman,et al.  Performance continuity and differentiability in Monte Carlo optimization , 1988, WSC '88.

[10]  Gilles Brassard,et al.  Algorithmics - theory and practice , 1988 .

[11]  Hossein Arsham,et al.  Sensitivity analysis and the “what if” problem in simulation analysis , 1989 .

[12]  R. Suri,et al.  Perturbation analysis: the state of the art and research issues explained via the GI/G/1 queue , 1989, Proc. IEEE.

[13]  Reuven Y. Rubinstein,et al.  Sensitivity Analysis and Performance Extrapolation for Computer Simulation Models , 1989, Oper. Res..

[14]  Alan Weiss,et al.  Sensitivity Analysis for Simulations via Likelihood Ratios , 1989, Oper. Res..

[15]  P. Glasserman,et al.  Smoothed perturbation analysis for a class of discrete-event systems , 1990 .

[16]  R. Rubinstein How to optimize discrete-event systems from a single sample path by the score function method , 1991 .

[17]  P. L’Ecuyer,et al.  A Unified View of the IPA, SF, and LR Gradient Estimation Techniques , 1990 .

[18]  Peter W. Glynn,et al.  Likelihood ratio gradient estimation for stochastic systems , 1990, CACM.

[19]  P. Glynn,et al.  Stochastic Optimization by Simulation: Convergence Proofs and Experimental Results for the GI/G/1 Queue in Steady-State , 1991 .

[20]  R. Rubinstein,et al.  Performance evaluation for the score function method in sensitivity analysis and stochastic optimization , 1992 .

[21]  Paul Glasserman,et al.  Derivative Estimates from Simulation of Continuous-Time Markov Chains , 1992, Oper. Res..

[22]  Pierre L'Ecuyer,et al.  On the Convergence Rates of IPA and FDC Derivative Estimators , 1990, Oper. Res..