Chain-scattering approach to H/spl infin/ control [Book Review]

[1]  H. Kimura Conjugation, interpolation and model-matching in H ∞ , 1989 .

[2]  H. Kimura Robust stabilizability for a class of transfer functions , 1983, The 22nd IEEE Conference on Decision and Control.

[3]  D. Hazony,et al.  Zero Cancellation Synthesis Using Impedance Operators , 1961 .

[4]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[5]  J. Pearson,et al.  Optimal disturbance reduction in linear multivariable systems , 1983, The 22nd IEEE Conference on Decision and Control.

[6]  Georg Pick,et al.  Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden , 1915 .

[7]  K. Glover Robust stabilization of linear multivariable systems: relations to approximation , 1986 .

[8]  G. Cohen,et al.  A J-spectral factorization approach to control , 1990 .

[9]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[10]  Keith Glover,et al.  A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .

[11]  G. Zames,et al.  On H ∞ -optimal sensitivity theory for SISO feedback systems , 1984 .

[12]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[13]  D. Youla A New Theory of Cascade Synthesis , 1961 .

[14]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[15]  W. Kahan,et al.  NORM-PRESERVING DILATIONS AND THEIR APPLICATIONS TO OPTIMAL ERROR BOUNDS* , 1982 .