Chain-scattering approach to H/spl infin/ control [Book Review]
暂无分享,去创建一个
[1] H. Kimura. Conjugation, interpolation and model-matching in H ∞ , 1989 .
[2] H. Kimura. Robust stabilizability for a class of transfer functions , 1983, The 22nd IEEE Conference on Decision and Control.
[3] D. Hazony,et al. Zero Cancellation Synthesis Using Impedance Operators , 1961 .
[4] G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .
[5] J. Pearson,et al. Optimal disturbance reduction in linear multivariable systems , 1983, The 22nd IEEE Conference on Decision and Control.
[6] Georg Pick,et al. Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden , 1915 .
[7] K. Glover. Robust stabilization of linear multivariable systems: relations to approximation , 1986 .
[8] G. Cohen,et al. A J-spectral factorization approach to control , 1990 .
[9] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .
[10] Keith Glover,et al. A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .
[11] G. Zames,et al. On H ∞ -optimal sensitivity theory for SISO feedback systems , 1984 .
[12] P. Khargonekar,et al. State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .
[13] D. Youla. A New Theory of Cascade Synthesis , 1961 .
[14] G. Zames. On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .
[15] W. Kahan,et al. NORM-PRESERVING DILATIONS AND THEIR APPLICATIONS TO OPTIMAL ERROR BOUNDS* , 1982 .