Modular bond-graph modelling and analysis of biomolecular systems.

Bond graphs can be used to build thermodynamically-compliant hierarchical models of biomolecular systems. As bond graphs have been widely used to model, analyse and synthesise engineering systems, this study suggests that they can play the same rôle in the modelling, analysis and synthesis of biomolecular systems. The particular structure of bond graphs arising from biomolecular systems is established and used to elucidate the relation between thermodynamically closed and open systems. Block diagram representations of the dynamics implied by these bond graphs are used to reveal implicit feedback structures and are linearised to allow the application of control-theoretical methods. Two concepts of modularity are examined: computational modularity where physical correctness is retained and behavioural modularity where module behaviour (such as ultrasensitivity) is retained. As well as providing computational modularity, bond graphs provide a natural formulation of behavioural modularity and reveal the sources of retroactivity. A bond graph approach to reducing retroactivity, and thus inter-module interaction, is shown to require a power supply such as that provided by the ATP ⇌ ADP + Pi reaction. The mitogen-activated protein kinase cascade (Raf-MEK-ERK pathway) is used as an illustrative example.

[1]  J. Clerk-Maxwell Remarks on the Mathematical Classification of Physical Quantities , 1869 .

[2]  H. S. Black,et al.  Stabilized feedback amplifiers , 1934 .

[3]  Pierre Van Rysselberghe,et al.  Reaction Rates and Affinities , 1958 .

[4]  G. Oster,et al.  Network Thermodynamics , 1971, Nature.

[5]  A Katchalsky,et al.  Network thermodynamics: dynamic modelling of biophysical systems , 1973, Quarterly Reviews of Biophysics.

[6]  Gordon M. Barrow,et al.  Physical chemistry for the life sciences , 1974 .

[7]  M. Savageau Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology , 1976 .

[8]  Dean Karnopp,et al.  Power and energy in linearized physical systems , 1977 .

[9]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[10]  P. E. Wellstead,et al.  Introduction to physical system modelling , 1979 .

[11]  Jacques Monod,et al.  Allosteric Proteins and Cellular Control Systems , 1989 .

[12]  François E. Cellier,et al.  Continuous system modeling , 1991 .

[13]  S. Toumodge,et al.  METAMODELLING: Bond Graphs and Dynamic Systems [BOOKSHELF] , 1996, IEEE Control Systems.

[14]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Fell Understanding the Control of Metabolism , 1996 .

[16]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[17]  Dean Karnopp,et al.  System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems , 1999 .

[18]  D. Fell,et al.  Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells , 2000, FEBS letters.

[19]  Peter J. Gawthrop,et al.  Sensitivity bond graphs , 2000, J. Frankl. Inst..

[20]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H V Westerhoff,et al.  Cellular information transfer regarded from a stoichiometry and control analysis perspective. , 2000, Bio Systems.

[22]  B. Kholodenko,et al.  Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. , 2000, European journal of biochemistry.

[23]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[24]  D. Lauffenburger,et al.  A Computational Study of Feedback Effects on Signal Dynamics in a Mitogen‐Activated Protein Kinase (MAPK) Pathway Model , 2001, Biotechnology progress.

[25]  H. Westerhoff,et al.  Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. Kholodenko,et al.  Modular response analysis of cellular regulatory networks. , 2002, Journal of theoretical biology.

[27]  J. Doyle,et al.  Reverse Engineering of Biological Complexity , 2002, Science.

[28]  P de Atauri,et al.  Evolution of 'design' principles in biochemical networks. , 2004, Systems biology.

[29]  A. Kremling,et al.  Modular analysis of signal transduction networks , 2004, IEEE Control Systems.

[30]  J. Heijnen Approximative kinetic formats used in metabolic network modeling , 2005, Biotechnology and bioengineering.

[31]  R. Heinrich,et al.  Control of MAPK signalling: from complexity to what really matters , 2005, Oncogene.

[32]  H. Qian,et al.  Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. , 2005, Biophysical chemistry.

[33]  Julio Saez-Rodriguez,et al.  Dissecting the puzzle of life: modularization of signal transduction networks , 2005, Comput. Chem. Eng..

[34]  Muffy Calder,et al.  When kinases meet mathematics: the systems biology of MAPK signalling , 2005, FEBS letters.

[35]  Nils Blüthgen,et al.  Effects of sequestration on signal transduction cascades , 2006, The FEBS journal.

[36]  J. Thoma,et al.  Simulation with Entropy in Engineering Thermodynamics: Understanding Matter and Systems with Bondgraphs , 2006 .

[37]  Vipul Periwal,et al.  On Modules and Modularity , 2006 .

[38]  Georg Job,et al.  Chemical potential—a quantity in search of recognition , 2006 .

[39]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[40]  Stefan Neubauer,et al.  The failing heart--an engine out of fuel. , 2007, The New England journal of medicine.

[41]  P. Gawthrop,et al.  Bond-graph modeling , 2007, IEEE Control Systems.

[42]  A. Turberfield,et al.  DNA nanomachines. , 2007, Nature nanotechnology.

[43]  Eberhard O. Voit,et al.  Kinetic modeling using S-systems and lin-log approaches , 2007 .

[44]  H. Sauro,et al.  MAPK Cascades as Feedback Amplifiers , 2007, 0710.5195.

[45]  Cristiana Sebu,et al.  Modular decomposition of metabolic systems via null-space analysis. , 2007, Journal of theoretical biology.

[46]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[47]  Eduardo Sontag,et al.  Modular cell biology: retroactivity and insulation , 2008, Molecular systems biology.

[48]  Oliver Mason,et al.  The rôle of control and system theory in systems biology , 2008, Annu. Rev. Control..

[49]  Hong Qian,et al.  Chemical Biophysics: Quantitative Analysis of Cellular Systems , 2008 .

[50]  F. Weichert,et al.  [Mathematical modelling in systems biology. Simulation of the desmoplastic stromal reaction as an example]. , 2008, Der Pathologe.

[51]  F. Bruggeman,et al.  Control, responses and modularity of cellular regulatory networks: a control analysis perspective. , 2008, IET systems biology.

[52]  H. Sauro Network dynamics. , 2009, Methods in molecular biology.

[53]  Domitilla Del Vecchio,et al.  Engineering principles in bio-molecular systems: From retroactivity to modularity , 2009, 2009 European Control Conference (ECC).

[54]  James P. Keener,et al.  Comprar Mathematical Physiology · I: Cellular Physiology | Keener, James | 9780387758466 | Springer , 2009 .

[55]  T. Sejnowski,et al.  Metabolic cost as a unifying principle governing neuronal biophysics , 2010, Proceedings of the National Academy of Sciences.

[56]  Domitilla Del Vecchio,et al.  Signaling properties of a covalent modification cycle are altered by a downstream target , 2010, Proceedings of the National Academy of Sciences.

[57]  Wolfgang Borutzky,et al.  Incremental Bond Graphs , 2011 .

[58]  Gianluca Setti,et al.  Design and Analysis of Biomolecular Circuits , 2011 .

[59]  Eduardo Sontag,et al.  Load-Induced Modulation of Signal Transduction Networks , 2011, Science Signaling.

[60]  Domitilla Del Vecchio,et al.  Retroactivity Attenuation in Bio-Molecular Systems Based on Timescale Separation , 2011, IEEE Transactions on Automatic Control.

[61]  Eduardo D. Sontag Modularity, Retroactivity, and Structural Identification , 2011 .

[62]  Domitilla Del Vecchio,et al.  Long signaling cascades tend to attenuate retroactivity. , 2011, Biophysical journal.

[63]  Eugenio Cinquemani,et al.  Identification of metabolic network models from incomplete high-throughput datasets , 2011, Bioinform..

[64]  Wolfgang Borutzky,et al.  Bond Graph Modelling of Engineering Systems , 2011 .

[65]  J. Stelling,et al.  Modular analysis of biological networks. , 2012, Advances in experimental medicine and biology.

[66]  Eberhard O. Voit,et al.  A First Course in Systems Biology , 2012 .

[67]  P. Wellstead,et al.  Feedback motif for the pathogenesis of Parkinson's disease. , 2012, IET systems biology.

[68]  G. Morris,et al.  A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome , 2012, Metabolic brain disease.

[69]  Domitilla Del Vecchio,et al.  A control theoretic framework for modular analysis and design of biomolecular networks , 2013, Annu. Rev. Control..

[70]  David R. Croucher,et al.  Signalling by protein phosphatases and drug development: a systems‐centred view , 2012, The FEBS journal.

[71]  Domitilla Del Vecchio,et al.  Retroactivity controls the temporal dynamics of gene transcription. , 2013, ACS synthetic biology.

[72]  Singiresu S Rao,et al.  A Comparative Study of Evidence Theories in the Modeling, Analysis, and Design of Engineering Systems , 2013 .

[73]  Arjan van der Schaft,et al.  On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics , 2011, SIAM J. Appl. Math..

[74]  D. Vecchio,et al.  Biomolecular Feedback Systems , 2014 .

[75]  The energy costs of biological insulators , 2012, 1210.3809.

[76]  Eytan Ruppin,et al.  A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration , 2014, Molecular Systems Biology.

[77]  Edmund J Crampin,et al.  Energy-based analysis of biochemical cycles using bond graphs , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[78]  J Julian Blow,et al.  Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks , 2014, eLife.

[79]  John H. Gennari,et al.  A Reappraisal of How to Build Modular, Reusable Models of Biological Systems , 2014, PLoS Comput. Biol..

[80]  M. Esposito,et al.  Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. , 2014, The Journal of chemical physics.

[81]  Gawthrop A tutorial introduction for control engineers , 2014 .

[82]  Laura E. Edwards,et al.  Data‐driven modeling reconciles kinetics of ERK phosphorylation, localization, and activity states , 2014, Molecular systems biology.

[83]  Edmund J. Crampin,et al.  Hierarchical bond graph modelling of biochemical networks , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[84]  Takashi Nakakuki,et al.  A Multifunctional Controller Realized by Biochemical Reactions , 2015 .

[85]  Ali Masoudi-Nejad,et al.  Metabolic cancer biology: structural-based analysis of cancer as a metabolic disease, new sights and opportunities for disease treatment. , 2015, Seminars in cancer biology.