Implementing neural architectures using analog VLSI circuits

Analog very large-scale integrated (VLSI) technology can be used not only to study and simulate biological systems, but also to emulate them in designing artificial sensory systems. A methodology for building these systems in CMOS VLSI technology has been developed using analog micropower circuit elements that can be hierarchically combined. Using this methodology, experimental VLSI chips of visual and motor subsystems have been designed and fabricated. These chips exhibit behavior similar to that of biological systems, and perform computations useful for artificial sensory systems. >

[1]  D. Sparks,et al.  Sensorimotor integration in the primate superior colliculus. I. Motor convergence. , 1987, Journal of neurophysiology.

[2]  Dana H. Ballard,et al.  Cortical connections and parallel processing: Structure and function , 1986, Behavioral and Brain Sciences.

[3]  Massimo A. Sivilotti,et al.  Real-time visual computations using analog CMOS processing arrays , 1987 .

[4]  John Lazzaro,et al.  Winner-Take-All Networks of O(N) Complexity , 1988, NIPS.

[5]  Carver A. Mead,et al.  A two-dimensional visual tracking array , 1988 .

[6]  M. Konishi,et al.  Axonal delay lines for time measurement in the owl's brainstem. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Jin Luo,et al.  Computing motion using analog and binary resistive networks , 1988, Computer.

[8]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  Carver A. Mead A Sensitive Electronic Photoreceptor , 1985 .

[10]  Carver A. Mead,et al.  Orientation-Selective VLSI Retina , 1988, Other Conferences.

[11]  Misha Mahowald,et al.  A silicon model of early visual processing , 1993, Neural Networks.

[12]  Tobi Delbrück,et al.  An analog VLSI implementation of the marr-poggio stereo correspondence algorithm , 1988, Neural Networks.

[13]  D L Sparks,et al.  Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. , 1987, Journal of neurophysiology.

[14]  F. Werblin Control of Retinal Sensitivity II. Lateral Interactions at the Outer Plexiform Layer , 1974 .

[15]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[16]  Richard F. Lyon,et al.  An analog electronic cochlea , 1988, IEEE Trans. Acoust. Speech Signal Process..

[17]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[18]  J. Early Effects of Space-Charge Layer Widening in Junction Transistors , 1952, Proceedings of the IRE.

[19]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[20]  B. Gilbert Translinear circuits: a proposed classification , 1975 .

[21]  John Lazzaro,et al.  A Silicon Model Of Auditory Localization , 1989, Neural Computation.

[22]  G. M. Shepherd,et al.  The neuron doctrine: a revision of functional concepts. , 1972, The Yale journal of biology and medicine.

[23]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[24]  G. Shepherd The Synaptic Organization of the Brain , 1979 .