Proposed definition of crystal substructure and substructural similarity

National Science Foundation (U.S.) (SI2-SSI Collaborative Research program Award OCI-1147503)

[1]  Lusann Yang,et al.  Data-mined similarity function between material compositions , 2013 .

[2]  K. N. Dollman,et al.  - 1 , 1743 .

[3]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[4]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[5]  I. D. Brown,et al.  What Factors Determine Cation Coordination Numbers , 1988 .

[6]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[7]  P Verwer,et al.  Method for the computational comparison of crystal structures. , 2005, Acta crystallographica. Section B, Structural science.

[8]  R. de Gelder Quantifying the Similarity of Crystal Structures. , 2006 .

[9]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[10]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[11]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[12]  Gérard Férey,et al.  Computational design and prediction of interesting not-yet-synthesized structures of inorganic materials by using building unit concepts. , 2002, Chemistry.

[13]  Mario Valle,et al.  How to quantify energy landscapes of solids. , 2009, The Journal of chemical physics.

[14]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[15]  Gérard Férey,et al.  De Novo Prediction of Inorganic Structures Developed through Automated Assembly of Secondary Building Units (AASBU Method) , 2000 .

[16]  G. Brunner,et al.  Zur Abgrenzung der Koordinationssphäre und Ermittlung der Koordinationszahl in Kristallstrukturen , 1971 .

[17]  P. Villars,et al.  Atomic environments in relation to compound prediction , 2000 .

[18]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[19]  J Fastrez,et al.  Crystallization and preliminary X-ray analysis of bacteriophage lambda lysozyme in which all tryptophans have been replaced by aza-tryptophans. , 1997, Acta crystallographica. Section D, Biological crystallography.

[20]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[21]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[22]  Gérard Férey,et al.  Hybrid organic-inorganic frameworks: routes for computational design and structure prediction. , 2004, Angewandte Chemie.

[23]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[24]  B. K. Panigrahi,et al.  ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE , 2010 .

[25]  M. O'keeffe,et al.  A proposed rigorous definition of coordination number , 1979 .

[26]  K. Hensel Journal für die reine und angewandte Mathematik , 1892 .

[27]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.