REMIND Your Neural Network to Prevent Catastrophic Forgetting

[1]  Tyler L. Hayes,et al.  Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[2]  Tinne Tuytelaars,et al.  Online Continual Learning with Maximally Interfered Retrieval , 2019, ArXiv.

[3]  Scott Cohen,et al.  Answering Questions about Data Visualizations using Efficient Bimodal Fusion , 2019, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[4]  Dahua Lin,et al.  Learning a Unified Classifier Incrementally via Rebalancing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Yandong Guo,et al.  Large Scale Incremental Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Christopher Kanan,et al.  Challenges and Prospects in Vision and Language Research , 2019, Front. Artif. Intell..

[7]  O. Ostapenko,et al.  Learning to Remember: A Synaptic Plasticity Driven Framework for Continual Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Christopher Kanan,et al.  VQD: Visual Query Detection In Natural Scenes , 2019, NAACL.

[9]  Kibok Lee,et al.  Overcoming Catastrophic Forgetting With Unlabeled Data in the Wild , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[10]  Yoshua Bengio,et al.  Gradient based sample selection for online continual learning , 2019, NeurIPS.

[11]  Christopher Kanan,et al.  Answer Them All! Toward Universal Visual Question Answering Models , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Tinne Tuytelaars,et al.  Task-Free Continual Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Rama Chellappa,et al.  Learning Without Memorizing , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Tomasz Kornuta,et al.  On transfer learning using a MAC model variant , 2018, ArXiv.

[15]  Marc'Aurelio Ranzato,et al.  Efficient Lifelong Learning with A-GEM , 2018, ICLR.

[16]  G. Tesauro,et al.  Learning to Learn without Forgetting By Maximizing Transfer and Minimizing Interference , 2018, ICLR.

[17]  Nathan D. Cahill,et al.  Memory Efficient Experience Replay for Streaming Learning , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[18]  Dahua Lin,et al.  Lifelong Learning via Progressive Distillation and Retrospection , 2018, ECCV.

[19]  Bogdan Raducanu,et al.  Memory Replay GANs: learning to generate images from new categories without forgetting , 2018, NeurIPS.

[20]  Adrian Popescu,et al.  DeeSIL: Deep-Shallow Incremental Learning , 2018, ECCV Workshops.

[21]  Cordelia Schmid,et al.  End-to-End Incremental Learning , 2018, ECCV.

[22]  Faisal Shafait,et al.  Revisiting Distillation and Incremental Classifier Learning , 2018, ACCV.

[23]  Ioannis Mitliagkas,et al.  Manifold Mixup: Better Representations by Interpolating Hidden States , 2018, ICML.

[24]  Nathan D. Cahill,et al.  New Metrics and Experimental Paradigms for Continual Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[25]  Stefan Wermter,et al.  Lifelong Learning of Spatiotemporal Representations With Dual-Memory Recurrent Self-Organization , 2018, Front. Neurorobot..

[26]  Yarin Gal,et al.  Towards Robust Evaluations of Continual Learning , 2018, ArXiv.

[27]  Byoung-Tak Zhang,et al.  Bilinear Attention Networks , 2018, NeurIPS.

[28]  David Barber,et al.  Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting , 2018, NeurIPS.

[29]  Stefan Wermter,et al.  Continual Lifelong Learning with Neural Networks: A Review , 2018, Neural Networks.

[30]  Christopher D. Manning,et al.  Compositional Attention Networks for Machine Reasoning , 2018, ICLR.

[31]  Christopher Joseph Pal,et al.  Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning , 2018, ICLR.

[32]  Philip H. S. Torr,et al.  Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence , 2018, ECCV.

[33]  Brian L. Price,et al.  DVQA: Understanding Data Visualizations via Question Answering , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[34]  Alexandros Karatzoglou,et al.  Overcoming catastrophic forgetting with hard attention to the task , 2018, ICML.

[35]  Martial Hebert,et al.  Learning by Asking Questions , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[36]  Ronald Kemker,et al.  FearNet: Brain-Inspired Model for Incremental Learning , 2017, ICLR.

[37]  Marcus Rohrbach,et al.  Memory Aware Synapses: Learning what (not) to forget , 2017, ECCV.

[38]  Anton van den Hengel,et al.  Visual Question Answering as a Meta Learning Task , 2017, ECCV.

[39]  Giuseppe Di Fatta,et al.  On expressiveness and uncertainty awareness in rule-based classification for data streams , 2017, Neurocomputing.

[40]  Richard E. Turner,et al.  Variational Continual Learning , 2017, ICLR.

[41]  Samira Ebrahimi Kahou,et al.  FigureQA: An Annotated Figure Dataset for Visual Reasoning , 2017, ICLR.

[42]  Ronald Kemker,et al.  Measuring Catastrophic Forgetting in Neural Networks , 2017, AAAI.

[43]  Sung Ju Hwang,et al.  Lifelong Learning with Dynamically Expandable Networks , 2017, ICLR.

[44]  David J. Foster Replay Comes of Age. , 2017, Annual review of neuroscience.

[45]  Lei Zhang,et al.  Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[46]  Marc'Aurelio Ranzato,et al.  Gradient Episodic Memory for Continual Learning , 2017, NIPS.

[47]  Matthieu Cord,et al.  MUTAN: Multimodal Tucker Fusion for Visual Question Answering , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[48]  Davide Maltoni,et al.  CORe50: a New Dataset and Benchmark for Continuous Object Recognition , 2017, CoRL.

[49]  Vahid Kazemi,et al.  Show, Ask, Attend, and Answer: A Strong Baseline For Visual Question Answering , 2017, ArXiv.

[50]  Christopher Kanan,et al.  An Analysis of Visual Question Answering Algorithms , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[51]  Surya Ganguli,et al.  Continual Learning Through Synaptic Intelligence , 2017, ICML.

[52]  Jeff Johnson,et al.  Billion-Scale Similarity Search with GPUs , 2017, IEEE Transactions on Big Data.

[53]  Chrisantha Fernando,et al.  PathNet: Evolution Channels Gradient Descent in Super Neural Networks , 2017, ArXiv.

[54]  Li Fei-Fei,et al.  CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Andrei A. Rusu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[56]  Christoph H. Lampert,et al.  iCaRL: Incremental Classifier and Representation Learning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Christopher Kanan,et al.  Visual question answering: Datasets, algorithms, and future challenges , 2016, Comput. Vis. Image Underst..

[58]  Christopher Kanan,et al.  Answer-Type Prediction for Visual Question Answering , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Razvan Pascanu,et al.  Progressive Neural Networks , 2016, ArXiv.

[60]  Dong Huk Park,et al.  Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding , 2016, EMNLP.

[61]  R. Bernardi,et al.  Automatic Description Generation from Images: A Survey of Models, Datasets, and Evaluation Measures , 2016, J. Artif. Intell. Res..

[62]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Trevor Darrell,et al.  Grounding of Textual Phrases in Images by Reconstruction , 2015, ECCV.

[64]  Dan Klein,et al.  Neural Module Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Alexander J. Smola,et al.  Stacked Attention Networks for Image Question Answering , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[66]  Susumu Takahashi Episodic-like memory trace in awake replay of hippocampal place cell activity sequences , 2015, eLife.

[67]  Svetlana Lazebnik,et al.  Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models , 2015, International Journal of Computer Vision.

[68]  Margaret Mitchell,et al.  VQA: Visual Question Answering , 2015, International Journal of Computer Vision.

[69]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[70]  Vicente Ordonez,et al.  ReferItGame: Referring to Objects in Photographs of Natural Scenes , 2014, EMNLP.

[71]  Mario Fritz,et al.  A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input , 2014, NIPS.

[72]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[73]  Donald A. Wilson,et al.  Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory , 2014, The Journal of Neuroscience.

[74]  João Gama,et al.  On evaluating stream learning algorithms , 2012, Machine Learning.

[75]  P. Lewis,et al.  Overlapping memory replay during sleep builds cognitive schemata , 2011, Trends in Cognitive Sciences.

[76]  J. O’Neill,et al.  Play it again: reactivation of waking experience and memory , 2010, Trends in Neurosciences.

[77]  Jesús S. Aguilar-Ruiz,et al.  Knowledge discovery from data streams , 2009, Intell. Data Anal..

[78]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[79]  Mattias P. Karlsson,et al.  Awake replay of remote experiences in the hippocampus , 2009, Nature Neuroscience.

[80]  David E. Warren,et al.  Hippocampal Amnesia Impairs All Manner of Relational Memory , 2008, Frontiers in human neuroscience.

[81]  J. W. Rudy,et al.  The hippocampal indexing theory and episodic memory: Updating the index , 2007, Hippocampus.

[82]  W. Abraham,et al.  Memory retention – the synaptic stability versus plasticity dilemma , 2005, Trends in Neurosciences.

[83]  R. Stickgold,et al.  Sleep, Learning, and Dreams: Off-line Memory Reprocessing , 2001, Science.

[84]  E. Gould,et al.  Learning enhances adult neurogenesis in the hippocampal formation , 1999, Nature Neuroscience.

[85]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[86]  Ricardo Insausti,et al.  The Nonhuman Primate Hippocampus: Neuroanatomy and Patterns of Cortical Connectivity , 2017 .

[87]  Cordelia Schmid,et al.  Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  M. Wilson,et al.  Coordinated memory replay in the visual cortex and hippocampus during sleep , 2007, Nature Neuroscience.

[89]  James L. McClelland,et al.  Considerations arising from a complementary learning systems perspective on hippocampus and neocortex , 1996, Hippocampus.

[90]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .