Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo

[1]  Charles M. Gray,et al.  Synchronous oscillations in neuronal systems: Mechanisms and functions , 1994, Journal of Computational Neuroscience.

[2]  N. Spruston,et al.  Serotonin Receptor Activation Inhibits Sodium Current and Dendritic Excitability in Prefrontal Cortex via a Protein Kinase C-Dependent Mechanism , 2002, The Journal of Neuroscience.

[3]  G. Buzsáki,et al.  Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity , 2001, Neuroscience.

[4]  William A. Catterall,et al.  Neuromodulation of Na+ channels: An unexpected form of cellular platicity , 2001, Nature Reviews Neuroscience.

[5]  M. Stryker Drums Keep Pounding a Rhythm in the Brain , 2001, Science.

[6]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[7]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[8]  Maxim Volgushev,et al.  Noise Makes Sense in Neuronal Computing , 2000, Science.

[9]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[10]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  M. Carandini,et al.  Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex , 2000, Nature Neuroscience.

[12]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[13]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[14]  M. Volgushev,et al.  Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex , 2000, The European journal of neuroscience.

[15]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[16]  C. Gray The Temporal Correlation Hypothesis of Visual Feature Integration Still Alive and Well , 1999, Neuron.

[17]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[18]  R. Miles,et al.  Cell‐attached measurements of the firing threshold of rat hippocampal neurones , 1999, The Journal of physiology.

[19]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[20]  C. Gray,et al.  Cellular Mechanisms Contributing to Response Variability of Cortical Neurons In Vivo , 1999, The Journal of Neuroscience.

[21]  R. Reid,et al.  Synchronous activity in the visual system. , 1999, Annual review of physiology.

[22]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[23]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[24]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[25]  M. Margulis,et al.  Temporal integration can readily switch between sublinear and supralinear summation. , 1998, Journal of neurophysiology.

[26]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[27]  C. Gray,et al.  Physiological properties of inhibitory interneurons in cat striate cortex. , 1997, Cerebral cortex.

[28]  Maria V. Sanchez-Vives,et al.  Influence of low and high frequency inputs on spike timing in visual cortical neurons. , 1997, Cerebral cortex.

[29]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[30]  V. Bringuier,et al.  Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat. , 1997, The Journal of physiology.

[31]  K. Yau,et al.  A cGMP-gated cation channel in depolarizing photoreceptors of the lizard parietal eye , 1997, Nature.

[32]  J. Movshon,et al.  Spike train encoding by regular-spiking cells of the visual cortex. , 1996, Journal of neurophysiology.

[33]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[34]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[35]  K. Kirschfeld The temporal-correlation hypothesis. , 1996, Trends in neurosciences.

[36]  M. Gutnick,et al.  Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea‐pig neocortical neurones in slices. , 1996, The Journal of physiology.

[37]  P. Schwindt,et al.  Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. , 1995, Journal of neurophysiology.

[38]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[39]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[40]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[41]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[42]  Trichur Raman Vidyasagar,et al.  Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[44]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[45]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[46]  C. Gray,et al.  Visually evoked oscillations of membrane potential in cells of cat visual cortex. , 1992, Science.

[47]  O Belluzzi,et al.  A five-conductance model of the action potential in the rat sympathetic neurone. , 1991, Progress in biophysics and molecular biology.

[48]  D. Prince,et al.  Patch-clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex. , 1991, Cerebral cortex.

[49]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence , 1990, The European journal of neuroscience.

[50]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[51]  M Hines,et al.  A program for simulation of nerve equations with branching geometries. , 1989, International journal of bio-medical computing.

[52]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Prince,et al.  Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. , 1988, Journal of neurophysiology.

[54]  P Anderson,et al.  Thresholds of action potentials evoked by synapses on the dendrites of pyramidal cells in the rat hippocampus in vitro. , 1987, The Journal of physiology.

[55]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[56]  M. Abeles Local Cortical Circuits: An Electrophysiological Study , 1982 .

[57]  Professor Moshe Abeles,et al.  Local Cortical Circuits , 1982, Studies of Brain Function.

[58]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[59]  D. Noble,et al.  Applications of Hodgkin-Huxley equations to excitable tissues. , 1966, Physiological reviews.

[60]  A. Hodgkin,et al.  The dual effect of membrane potential on sodium conductance in the giant axon of Loligo , 1952, The Journal of physiology.