WDIBS: Wasserstein deterministic information bottleneck for state abstraction to balance state-compression and performance

[1]  Xiaofei Yang,et al.  A new similarity combining reconstruction coefficient with pairwise distance for agglomerative clustering , 2020, Inf. Sci..

[2]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[3]  Henrik Karstoft,et al.  Routing in congested baggage handling systems using deep reinforcement learning , 2020, Integr. Comput. Aided Eng..

[4]  Ah-Hwee Tan,et al.  Hierarchical Reinforcement Learning , 2021, ACM Comput. Surv..

[5]  Shiping Wang,et al.  An adaptive kernelized rank-order distance for clustering non-spherical data with high noise , 2020, International Journal of Machine Learning and Cybernetics.

[6]  Rajeev Alur,et al.  Abstract Value Iteration for Hierarchical Reinforcement Learning , 2021, AISTATS.

[7]  Lawson L. S. Wong,et al.  State Abstraction as Compression in Apprenticeship Learning , 2019, AAAI.

[8]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[9]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[10]  Wolfram Burgard,et al.  Socially compliant mobile robot navigation via inverse reinforcement learning , 2016, Int. J. Robotics Res..

[11]  Yang Chen,et al.  Rate Distortion via Deep Learning , 2020, IEEE Transactions on Communications.

[12]  X. Qin,et al.  Local gap density for clustering high-dimensional data with varying densities , 2019, Knowl. Based Syst..

[13]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[14]  Michael L. Littman,et al.  State Abstractions for Lifelong Reinforcement Learning , 2018, ICML.

[15]  Qiong Chen,et al.  Deep reinforcement learning for imbalanced classification , 2019, Applied Intelligence.

[16]  Weichao Zhou,et al.  Safety-Aware Apprenticeship Learning , 2018, CAV.

[17]  Marc G. Bellemare,et al.  The Arcade Learning Environment: An Evaluation Platform for General Agents , 2012, J. Artif. Intell. Res..

[18]  Marc G. Bellemare,et al.  DeepMDP: Learning Continuous Latent Space Models for Representation Learning , 2019, ICML.

[19]  Erwan Lecarpentier,et al.  Lipschitz Lifelong Reinforcement Learning , 2020, AAAI.

[20]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[21]  Doina Precup,et al.  Value Preserving State-Action Abstractions , 2020, AISTATS.

[22]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[23]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[24]  Siddhartha S. Srinivasa,et al.  Game-Theoretic Modeling of Human Adaptation in Human-Robot Collaboration , 2017, 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI.

[25]  Michael L. Littman,et al.  Near Optimal Behavior via Approximate State Abstraction , 2016, ICML.

[26]  Doina Precup,et al.  The Option-Critic Architecture , 2016, AAAI.

[27]  William Zhu,et al.  Multi-label feature selection via feature manifold learning and sparsity regularization , 2018, Int. J. Mach. Learn. Cybern..

[28]  Xiaofei Yang,et al.  GDPC: generalized density peaks clustering algorithm based on order similarity , 2020, International Journal of Machine Learning and Cybernetics.

[29]  Vicenç Gómez,et al.  Hierarchical Linearly-Solvable Markov Decision Problems , 2016, ICAPS.

[30]  William Zhu,et al.  A New Local Density for Density Peak Clustering , 2018, PAKDD.

[31]  Hanten Chang,et al.  Reinforcement learning with convolutional reservoir computing , 2019, Applied Intelligence.

[32]  Vikash Kumar,et al.  A Game Theoretic Framework for Model Based Reinforcement Learning , 2020, ICML.

[33]  Elon Lindenstrauss,et al.  From Rate Distortion Theory to Metric Mean Dimension: Variational Principle , 2017, IEEE Transactions on Information Theory.

[34]  David J. Schwab,et al.  The Deterministic Information Bottleneck , 2015, Neural Computation.

[35]  John Lygeros,et al.  Efficient Approximation of Channel Capacities , 2015, IEEE Transactions on Information Theory.

[36]  Sean P. Meyn,et al.  Fundamental Design Principles for Reinforcement Learning Algorithms , 2021, Handbook of Reinforcement Learning and Control.

[37]  Sergey Levine,et al.  Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization , 2016, ICML.

[38]  Mahdi Cheraghchi,et al.  An Overview of Capacity Results for Synchronization Channels , 2019, ArXiv.

[39]  Aaron B. Wagner,et al.  A Rate–Distortion Approach to Index Coding , 2014, IEEE Transactions on Information Theory.

[40]  Tom Schaul,et al.  FeUdal Networks for Hierarchical Reinforcement Learning , 2017, ICML.

[41]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[42]  David Abel,et al.  A Theory of Abstraction in Reinforcement Learning , 2022, ArXiv.