Face categorization in visual scenes may start in a higher order area of the right fusiform gyrus: evidence from dynamic visual stimulation in neuroimaging.

How a visual stimulus is initially categorized as a face by the cortical face-processing network remains largely unclear. In this study we used functional MRI to study the dynamics of face detection in visual scenes by using a paradigm in which scenes containing faces or cars are revealed progressively as they emerge from visual noise. Participants were asked to respond as soon as they detected a face or car during the noise sequence. Among the face-sensitive regions identified based on a standard localizer, a high-level face-sensitive area, the right fusiform face area (FFA), showed the earliest difference between face and car activation. Critically, differential activation in FFA was observed before differential activation in the more posteriorly located occipital face area (OFA). A whole brain analysis confirmed these findings, with a face-sensitive cluster in the right fusiform gyrus being the only cluster showing face preference before successful behavioral detection. Overall, these findings indicate that following generic low-level visual analysis, a face stimulus presented in a gradually revealed visual scene is first detected in the right middle fusiform gyrus, only after which further processing spreads to a network of cortical and subcortical face-sensitive areas (including the posteriorly located OFA). These results provide further evidence for a nonhierarchical organization of the cortical face-processing network.

[1]  J. Sergent Microgenesis of Face Perception , 1986 .

[2]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[3]  A. Mike Burton,et al.  Learning new faces in an interactive activation and competition model , 1994 .

[4]  Doris Y. Tsao,et al.  Processing Faces in the Macaque Temporal Lobe Patches with Links : A Unified System , 2008 .

[5]  C. Jacques,et al.  The N170 : understanding the time-course of face perception in the human brain , 2011 .

[6]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[7]  R. Goebel,et al.  Cerebral Cortex doi:10.1093/cercor/bhj005 Impaired Face Discrimination in Acquired Prosopagnosia Is Associated with Abnormal Response to Individual Faces in the Right Middle Fusiform Gyrus , 2005 .

[8]  G. Yovel,et al.  TMS Evidence for the Involvement of the Right Occipital Face Area in Early Face Processing , 2007, Current Biology.

[9]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[10]  Bruno Rossion,et al.  Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia , 2008, NeuroImage.

[11]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[12]  H. Hécaen,et al.  Agnosia for faces (prosopagnosia). , 1962, Archives of neurology.

[13]  F. Tong,et al.  The timing of perceptual decisions for ambiguous face stimuli in the human ventral visual cortex. , 2006, Cerebral cortex.

[14]  Patrik Vuilleumier,et al.  Top-down activation of fusiform cortex without seeing faces in prosopagnosia. , 2010, Cerebral cortex.

[15]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[16]  R. Goebel,et al.  Neural correlates of shape and surface reflectance information in individual faces , 2009, Neuroscience.

[17]  A. Parkin,et al.  Cerebral Lateralisation at Different Stages of Facial Processing , 1987, Cortex.

[18]  Karl J. Friston,et al.  The Neural Structures Expressing Perceptual Hysteresis in Visual Letter Recognition , 2002, Neuron.

[19]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[20]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[21]  Brittany S. Cassidy,et al.  Lower-Level Stimulus Features Strongly Influence Responses in the Fusiform Face Area , 2010, Cerebral cortex.

[22]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  Adrian Schwaninger,et al.  Role of Featural and Configural Information in Familiar and Unfamiliar Face Recognition , 2002, Biologically Motivated Computer Vision.

[24]  B. Rossion,et al.  ERP evidence for the speed of face categorization in the human brain: Disentangling the contribution of low-level visual cues from face perception , 2011, Vision Research.

[25]  T. Allison,et al.  Face-sensitive regions in human extrastriate cortex studied by functional MRI. , 1995, Journal of neurophysiology.

[26]  N. Kanwisher,et al.  The Human Body , 2001 .

[27]  A. Leventhal,et al.  Neural correlates of boundary perception , 1998, Visual Neuroscience.

[28]  Jie Tian,et al.  BRAIN IMAGING NEUROREPORT , 2007 .

[29]  M. Farah,et al.  Parts and Wholes in Face Recognition , 1993, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[30]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[31]  R. Watt Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[32]  Rainer Goebel,et al.  From Coarse to Fine? Spatial and Temporal Dynamics of Cortical Face Processing , 2010, Cerebral cortex.

[33]  N. Kanwisher,et al.  A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex , 2007, PloS one.

[34]  D. Maurer,et al.  Expert face processing requires visual input to the right hemisphere during infancy , 2003, Nature Neuroscience.

[35]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[36]  M. Riesenhuber,et al.  Evaluation of a Shape-Based Model of Human Face Discrimination Using fMRI and Behavioral Techniques , 2006, Neuron.

[37]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[38]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[39]  R. Goebel,et al.  Tracking cognitive processes with functional MRI mental chronometry , 2003, Current Opinion in Neurobiology.

[40]  L. D. Harmon The recognition of faces. , 1973, Scientific American.

[41]  Tobias Egner,et al.  Cerebral Cortex doi:10.1093/cercor/bhi129 Mistaking a House for a Face: Neural Correlates of Misperception in Healthy Humans , 2005 .

[42]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[43]  J. Haxby,et al.  Neural systems for recognition of familiar faces , 2007, Neuropsychologia.

[44]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[45]  R. Yin Looking at Upside-down Faces , 1969 .

[46]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[47]  R. VanRullen On second glance: Still no high-level pop-out effect for faces , 2006, Vision Research.

[48]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[49]  Bruno Rossion,et al.  Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170 , 2008, NeuroImage.

[50]  Alex R. Wade,et al.  Cue-Invariant Networks for Figure and Background Processing in Human Visual Cortex , 2006, The Journal of Neuroscience.

[51]  J. Flavell,et al.  A microgenetic approach to perception and thought. , 1957, Psychological bulletin.

[52]  Carl R Olson,et al.  Representing the Forest before the Trees: A Global Advantage Effect in Monkey Inferotemporal Cortex , 2009, The Journal of Neuroscience.

[53]  F. Mast,et al.  Featural and configural face processing strategies: evidence from a functional magnetic resonance imaging study , 2008, Neuroreport.

[54]  R N Henson,et al.  Mechanisms of top-down facilitation in perception of visual objects studied by FMRI. , 2007, Cerebral cortex.

[55]  Chang'an A Zhan,et al.  Boundary cue invariance in cortical orientation maps. , 2006, Cerebral cortex.

[56]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[57]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.

[58]  C. M. Mooney Age in the development of closure ability in children. , 1957, Canadian journal of psychology.

[59]  Allison M McKendrick,et al.  The effect of normal aging on closed contour shape discrimination. , 2010, Journal of vision.

[60]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[61]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[62]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[63]  Michael B. Lewis,et al.  Face Detection: Mapping Human Performance , 2003, Perception.

[64]  C. Büchel,et al.  The robustness of perception , 2005, The European journal of neuroscience.

[65]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[66]  Christopher J. Fox,et al.  Defining the face processing network: Optimization of the functional localizer in fMRI , 2009, Human brain mapping.

[67]  C. Gross,et al.  Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. , 2009, Journal of neurophysiology.

[68]  Sébastien M. Crouzet,et al.  Fast saccades toward faces: face detection in just 100 ms. , 2010, Journal of vision.

[69]  Jim M. Monti,et al.  Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream , 2010, The Journal of Neuroscience.

[70]  Nancy Kanwisher,et al.  The distribution of category and location information across object-selective regions in human visual cortex , 2008, Proceedings of the National Academy of Sciences.

[71]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[72]  C. Jacques,et al.  The time course of the inversion effect during individual face discrimination. , 2007, Journal of vision.

[73]  N. Kanwisher,et al.  The fusiform face area subserves face perception, not generic within-category identification , 2004, Nature Neuroscience.

[74]  T. Allison,et al.  Electrophysiological Studies of Face Perception in Humans , 1996, Journal of Cognitive Neuroscience.

[75]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[76]  R. Tootell,et al.  An anterior temporal face patch in human cortex, predicted by macaque maps , 2009, Proceedings of the National Academy of Sciences.

[77]  R Turner,et al.  Optimized EPI for fMRI studies of the orbitofrontal cortex , 2003, NeuroImage.

[78]  M. Landy,et al.  The effect of viewpoint on perceived visual roughness. , 2007, Journal of vision.

[79]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[80]  S. Ullman Object recognition and segmentation by a fragment-based hierarchy , 2007, Trends in Cognitive Sciences.

[81]  R. Goebel,et al.  The role of feedback in shaping neural representations in cat visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Li Fei-Fei,et al.  Neural mechanisms of rapid natural scene categorization in human visual cortex , 2009, Nature.

[83]  Alison J. Wiggett,et al.  Patterns of fMRI Activity Dissociate Overlapping Functional Brain Areas that Respond to Biological Motion , 2006, Neuron.

[84]  P. Perona,et al.  What do we perceive in a glance of a real-world scene? , 2007, Journal of vision.

[85]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[86]  E. Halgren,et al.  Cognitive response profile of the human fusiform face area as determined by MEG. , 2000, Cerebral cortex.

[87]  Frans A. J. Verstraten,et al.  Dynamics of visual recognition revealed by fMRI , 2006, NeuroImage.

[88]  Michael Esterman,et al.  Perceptual Expectation Evokes Category , 2010 .

[89]  C. Jacques,et al.  The initial representation of individual faces in the right occipito-temporal cortex is holistic: electrophysiological evidence from the composite face illusion. , 2009, Journal of vision.

[90]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[91]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[92]  J. Sergent An investigation into component and configural processes underlying face perception. , 1984, British journal of psychology.

[93]  Charan Ranganath,et al.  Category expectation modulates baseline and stimulus-evoked activity in human inferotemporal cortex , 2009, Brain Research.

[94]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[95]  Alumit Ishai,et al.  Let’s face it: It’s a cortical network , 2008, NeuroImage.

[96]  Karl J. Friston,et al.  How the brain learns to see objects and faces in an impoverished context , 1997, Nature.

[97]  O. Koenig,et al.  Separable Mechanisms in Face Processing: Evidence from Hemispheric Specialization , 1991, Journal of Cognitive Neuroscience.

[98]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[99]  Patrick Cavanagh,et al.  Recovery of 3D volume from 2-tone images of novel objects , 1998, Cognition.

[100]  W. Thorpe Duet-Singing Birds , 1973 .

[101]  Avi Chaudhuri,et al.  Patchy Organization and Asymmetric Distribution of the Neural Correlates of Face Processing in Monkey Inferotemporal Cortex , 2005, Current Biology.

[102]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[103]  Ravi S. Menon,et al.  The effects of visual object priming on brain activation before and after recognition , 2000, Current Biology.

[104]  Christian Büchel,et al.  Detecting fearful and neutral faces: BOLD latency differences in amygdala–hippocampal junction , 2006, NeuroImage.

[105]  Paul E. Downing,et al.  The Face Network: Overextended? (Comment on: “Let's face it: It's a cortical network” by Alumit Ishai) , 2008, NeuroImage.

[106]  Kenneth F. Valyear,et al.  The fusiform face area is not sufficient for face recognition: Evidence from a patient with dense prosopagnosia and no occipital face area , 2006, Neuropsychologia.

[107]  G. Rousselet,et al.  Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes. , 2003, Journal of vision.

[108]  G. Yovel,et al.  Event‐related potential and functional MRI measures of face‐selectivity are highly correlated: A simultaneous ERP‐fMRI investigation , 2010, Human brain mapping.

[109]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[110]  Javid Sadr,et al.  Object recognition and Random Image Structure Evolution , 2004, Cogn. Sci..

[111]  R. Goebel,et al.  Holistic Face Categorization in Higher Order Visual Areas of the Normal and Prosopagnosic Brain: Toward a Non-Hierarchical View of Face Perception , 2011, Front. Hum. Neurosci..

[112]  Susan M. Letourneau,et al.  Behavioral and ERP measures of holistic face processing in a composite task , 2008, Brain and Cognition.

[113]  Michelle R. Greene,et al.  Visual search in scenes involves selective and nonselective pathways , 2011, Trends in Cognitive Sciences.

[114]  D. Pitcher,et al.  Transcranial Magnetic Stimulation Disrupts the Perception and Embodiment of Facial Expressions , 2008, The Journal of Neuroscience.

[115]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[116]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[117]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[118]  A. Ishai,et al.  Effective connectivity within the distributed cortical network for face perception. , 2007, Cerebral cortex.

[119]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[120]  M. Seghier,et al.  A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. , 2003, Brain : a journal of neurology.

[121]  P. Sajda,et al.  EEG-Informed fMRI Reveals Spatiotemporal Characteristics of Perceptual Decision Making , 2007, The Journal of Neuroscience.

[122]  Bruno Rossion,et al.  Faces are represented holistically in the human occipito-temporal cortex , 2006, NeuroImage.

[123]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[124]  Kalanit Grill-Spector,et al.  Sparsely-distributed organization of face and limb activations in human ventral temporal cortex , 2010, NeuroImage.

[125]  Michael J. Tarr,et al.  Task-Specific Codes for Face Recognition: How they Shape the Neural Representation of Features for Detection and Individuation , 2008, PloS one.

[126]  Amanda L. Kaas,et al.  Distinct cortical networks for the detection and identification of human body , 2009, NeuroImage.

[127]  Rebecca F. Schwarzlose,et al.  Separate Face and Body Selectivity on the Fusiform Gyrus , 2005, The Journal of Neuroscience.

[128]  M. Tarr,et al.  The Fusiform Face Area is Part of a Network that Processes Faces at the Individual Level , 2000, Journal of Cognitive Neuroscience.

[129]  Ravi S. Menon,et al.  Spatial and temporal limits in cognitive neuroimaging with fMRI , 1999, Trends in Cognitive Sciences.