Image super-resolution: The techniques, applications, and future

Super-resolution (SR) technique reconstructs a higher-resolution image or sequence from the observed LR images. As SR has been developed for more than three decades, both multi-frame and single-frame SR have significant applications in our daily life. This paper aims to provide a review of SR from the perspective of techniques and applications, and especially the main contributions in recent years. Regularized SR methods are most commonly employed in the last decade. Technical details are discussed in this article, including reconstruction models, parameter selection methods, optimization algorithms and acceleration strategies. Moreover, an exhaustive summary of the current applications using SR techniques has been presented. Lastly, the article discusses the current obstacles for future research.

[1]  Gonzalo Seco-Granados,et al.  A Reduced Complexity Approach to IAA Beamforming for Efficient DOA Estimation of Coherent Sources , 2011, EURASIP J. Adv. Signal Process..

[2]  Peyman Milanfar,et al.  A computationally efficient superresolution image reconstruction algorithm , 2001, IEEE Trans. Image Process..

[3]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[4]  Nirmal K. Bose,et al.  Advances in superresolution using L-curve , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[5]  Li Peng,et al.  Adaptive Norm Selection for Regularized Image Restoration and Super-Resolution , 2016, IEEE Transactions on Cybernetics.

[6]  Chong Luo,et al.  Multimedia Cloud Computing , 2011, IEEE Signal Processing Magazine.

[7]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[8]  Xuelong Li,et al.  Geometry constrained sparse coding for single image super-resolution , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[10]  Andrew Zisserman,et al.  Computer vision applied to super resolution , 2003, IEEE Signal Process. Mag..

[11]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[12]  Kosuke Sato,et al.  Super-resolution with randomly shaped pixels and sparse regularization , 2013, IEEE International Conference on Computational Photography (ICCP).

[13]  Nirmal K. Bose,et al.  Recursive reconstruction of high resolution image from noisy undersampled multiframes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[14]  Bryan S. Morse,et al.  Image magnification using level-set reconstruction , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[15]  Peter J. Ramadge,et al.  Edge-Preserving Image Regularization Based on Morphological Wavelets and Dyadic Trees , 2012, IEEE Transactions on Image Processing.

[16]  Lisimachos P. Kondi,et al.  An image super-resolution algorithm for different error levels per frame , 2006, IEEE Transactions on Image Processing.

[17]  Yun Yuan,et al.  Super-resolution reconstruction and higher-degree function deformation model based matching for Chang’E-1 lunar images , 2009 .

[18]  Gamal Fahmy Super-resolution construction of IRIS images from a visual low resolution face video , 2007, 2007 9th International Symposium on Signal Processing and Its Applications.

[19]  Michael K. Ng,et al.  A New Total Variation Method for Multiplicative Noise Removal , 2009, SIAM J. Imaging Sci..

[20]  A. J. Shah,et al.  Image super resolution-A survey , 2012, 2012 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking.

[21]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[22]  Seungyong Lee,et al.  Handling outliers in non-blind image deconvolution , 2011, 2011 International Conference on Computer Vision.

[23]  Michael Elad,et al.  A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur , 2001, IEEE Trans. Image Process..

[24]  Frédéric Champagnat,et al.  Dense optical flow by iterative local window registration , 2005, IEEE International Conference on Image Processing 2005.

[25]  Yu He,et al.  Vehicle license plate super-resolution using soft learning prior , 2011, Multimedia Tools and Applications.

[27]  Aggelos K. Katsaggelos,et al.  Super-Resolution of Multispectral Images , 2009, Comput. J..

[28]  Michael Elad,et al.  Super-Resolution Without Explicit Subpixel Motion Estimation , 2009, IEEE Transactions on Image Processing.

[29]  Dmitriy Vatolin,et al.  Fast video super-resolution via classification , 2008, 2008 15th IEEE International Conference on Image Processing.

[30]  Manjunath V. Joshi,et al.  SUPER-RESOLUTION OF HYPERSPECTRAL IMAGES USING COMPRESSIVE SENSING BASED APPROACH , 2012 .

[31]  Hua Huang,et al.  Neighbor embedding based super-resolution algorithm through edge detection and feature selection , 2009, Pattern Recognit. Lett..

[32]  Josiane Zerubia,et al.  Wavelet-based superresolution in astronomy. , 2003 .

[33]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[34]  Xuelong Li,et al.  Partially Supervised Neighbor Embedding for Example-Based Image Super-Resolution , 2011, IEEE Journal of Selected Topics in Signal Processing.

[35]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[36]  Aggelos K. Katsaggelos,et al.  Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images , 1995, Proceedings., International Conference on Image Processing.

[37]  Lihua Yang,et al.  A robust multiframe super-resolution algorithm based on half-quadratic estimation with modified BTV regularization , 2013, Digit. Signal Process..

[38]  Liangpei Zhang,et al.  A Blind Super-Resolution Reconstruction Method Considering Image Registration Errors , 2015, Int. J. Fuzzy Syst..

[39]  Kai-Kuang Ma,et al.  A survey on super-resolution imaging , 2011, Signal Image Video Process..

[40]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[41]  Xiaogang Wang,et al.  Hallucinating face by eigentransformation , 2005, IEEE Trans. Syst. Man Cybern. Part C.

[42]  Michael Elad,et al.  Super-Resolution Reconstruction of Image Sequences , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Hugh G. Lewis,et al.  Super-resolution land cover pattern prediction using a Hopfield neural network , 2002 .

[44]  David P. Wipf,et al.  Variational Bayesian Inference Techniques , 2010, IEEE Signal Processing Magazine.

[45]  Richard Bamler,et al.  Demonstration of Super-Resolution for Tomographic SAR Imaging in Urban Environment , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Xuelong Li,et al.  Multi-scale dictionary for single image super-resolution , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Xuelong Li,et al.  Joint Learning for Single-Image Super-Resolution via a Coupled Constraint , 2012, IEEE Transactions on Image Processing.

[48]  Aggelos K. Katsaggelos,et al.  Parameter estimation in Bayesian high-resolution image reconstruction with multisensors , 2003, IEEE Trans. Image Process..

[49]  Stephan Didas,et al.  Relations Between Higher Order TV Regularization and Support Vector Regression , 2005, Scale-Space.

[50]  Quan Pan,et al.  Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[51]  Ramesh Raskar,et al.  Sub-pixel Layout for Super-Resolution with Images in the Octic Group , 2014, ECCV.

[52]  Liangpei Zhang,et al.  Super-Resolution Reconstruction for Multi-Angle Remote Sensing Images Considering Resolution Differences , 2014, Remote. Sens..

[53]  Thomas S. Huang,et al.  Efficient sparse representation based image super resolution via dual dictionary learning , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[54]  Seunghyeon Rhee,et al.  Discrete cosine transform based regularized high-resolution image reconstruction algorithm , 1999 .

[55]  Yiguang Chen,et al.  Single-Image Super-Resolution Reconstruction via Learned Geometric Dictionaries and Clustered Sparse Coding , 2012, IEEE Transactions on Image Processing.

[56]  Matthew D. Wilson,et al.  A Low Noise Pixel Architecture for Scientific CMOS Monolithic Active Pixel Sensors , 2010 .

[57]  Yiqiu Dong,et al.  Automated Regularization Parameter Selection in Multi-Scale Total Variation Models for Image Restoration , 2011, Journal of Mathematical Imaging and Vision.

[58]  Michael Elad,et al.  Advances and challenges in super‐resolution , 2004, Int. J. Imaging Syst. Technol..

[59]  Xiaoou Tang,et al.  Learning a Deep Convolutional Network for Image Super-Resolution , 2014, ECCV.

[60]  R. Barnard,et al.  High-resolution iris image reconstruction from low-resolution imagery , 2006, SPIE Optics + Photonics.

[61]  Edmund Y Lam,et al.  Maximum a posteriori blind image deconvolution with Huber-Markov random-field regularization. , 2009, Optics letters.

[62]  John F. Roddick,et al.  Sparse representation-based MRI super-resolution reconstruction , 2014 .

[63]  Peyman Milanfar,et al.  A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution) , 2000 .

[64]  Yücel Altunbasak,et al.  Super-resolution reconstruction of hyperspectral images , 2004, IEEE Transactions on Image Processing.

[65]  Liangpei Zhang,et al.  Adaptive Multiple-Frame Image Super-Resolution Based on U-Curve , 2010, IEEE Transactions on Image Processing.

[66]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[67]  Zhongfu Ye,et al.  A restoration algorithm for images contaminated by mixed Gaussian plus random-valued impulse noise , 2013, J. Vis. Commun. Image Represent..

[68]  Edmund Y. Lam,et al.  A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video , 2007, EURASIP J. Adv. Signal Process..

[69]  Peyman Milanfar,et al.  Kernel Regression for Image Processing and Reconstruction , 2007, IEEE Transactions on Image Processing.

[70]  Liangpei Zhang,et al.  Hyperspectral Image Denoising Employing a Spectral–Spatial Adaptive Total Variation Model , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[71]  Xuelong Li,et al.  A multi-frame image super-resolution method , 2010, Signal Process..

[72]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[73]  Marios Savvides,et al.  Robust long range iris recognition from video using super resolution , 2010 .

[74]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[75]  Jin Chen,et al.  Video Super-Resolution Using Generalized Gaussian Markov Random Fields , 2012, IEEE Signal Processing Letters.

[76]  Brendt Wohlberg,et al.  Efficient Minimization Method for a Generalized Total Variation Functional , 2009, IEEE Transactions on Image Processing.

[77]  Jianglin Ma,et al.  A comparison of superresolution reconstruction methods for multi-angle CHRIS/Proba images , 2008, Remote Sensing.

[78]  Quan Pan,et al.  Hyperspectral imagery super-resolution by sparse representation and spectral regularization , 2011, EURASIP J. Adv. Signal Process..

[79]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[80]  Aggelos K. Katsaggelos,et al.  Bayesian resolution enhancement of compressed video , 2004, IEEE Transactions on Image Processing.

[81]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[82]  Takashi Matsuyama,et al.  Simultaneous super-resolution and 3D video using graph-cuts , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[83]  Xuelong Li,et al.  Color to Gray: Visual Cue Preservation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[84]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[85]  J. Mixter Fast , 2012 .

[86]  J. L. Harris,et al.  Diffraction and Resolving Power , 1964 .

[87]  Yi Sun,et al.  Video super resolution based on non-local regularization and reliable motion estimation , 2014, Signal Process. Image Commun..

[88]  Moon Gi Kang,et al.  Regularized adaptive high-resolution image reconstruction considering inaccurate subpixel registration , 2003, IEEE Trans. Image Process..

[89]  C. Latry,et al.  Super resolution: quincunx sampling and fusion processing , 2003, IGARSS.

[90]  Huifang Li,et al.  Fast MAP-based multiframe super-resolution image reconstruction , 2005, Image Vis. Comput..

[91]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[92]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[93]  Liangpei Zhang,et al.  Adjustable Model-Based Fusion Method for Multispectral and Panchromatic Images , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[94]  Fangyu Hu,et al.  Robust super-resolution reconstruction based on adaptive regularization , 2011, 2011 International Conference on Wireless Communications and Signal Processing (WCSP).

[95]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[96]  Gang Yang,et al.  Missing Information Reconstruction of Remote Sensing Data: A Technical Review , 2015, IEEE Geoscience and Remote Sensing Magazine.

[97]  Michael K. Ng,et al.  Super-Resolution Image Restoration from Blurred Low-Resolution Images , 2005, Journal of Mathematical Imaging and Vision.

[98]  Deqing Sun,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 on Bayesian Adaptive Video Super Resolution , 2022 .

[99]  Marek Rudnicki,et al.  Regularization Parameter Selection in Discrete Ill-Posed Problems — The Use of the U-Curve , 2007, Int. J. Appl. Math. Comput. Sci..

[100]  Takeo Kanade,et al.  Hallucinating faces , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[101]  Robert L. Stevenson,et al.  A Bayesian approach to image expansion for improved definitio , 1994, IEEE Trans. Image Process..

[102]  Michael S. Ramsey,et al.  Super-resolution of THEMIS thermal infrared data: Compositional relationships of surface units below the 100 meter scale on Mars , 2010 .

[103]  Mei Han,et al.  Soft Edge Smoothness Prior for Alpha Channel Super Resolution , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[104]  Stephen Lin,et al.  Super resolution using edge prior and single image detail synthesis , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[105]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[106]  R. Wolke,et al.  Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .

[107]  Rune Solberg,et al.  Subpixel mapping of snow cover in forests by optical remote sensing , 2003 .

[108]  Michal Irani,et al.  Motion Analysis for Image Enhancement: Resolution, Occlusion, and Transparency , 1993, J. Vis. Commun. Image Represent..

[109]  Stanley J. Reeves,et al.  Efficient Huber-Markov Edge-Preserving Image Restoration , 2006, IEEE Transactions on Image Processing.

[110]  Liangpei Zhang,et al.  Multiframe Super-Resolution Employing a Spatially Weighted Total Variation Model , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[111]  Liangpei Zhang,et al.  Hyperspectral Image Restoration Using Low-Rank Matrix Recovery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[112]  Liangpei Zhang,et al.  A super-resolution reconstruction algorithm for surveillance images , 2010, Signal Process..

[113]  Liangpei Zhang,et al.  Remote Sensing Image Subpixel Mapping Based on Adaptive Differential Evolution , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[114]  Stephen P. Boyd,et al.  An ADMM Algorithm for a Class of Total Variation Regularized Estimation Problems , 2012, 1203.1828.

[115]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[116]  Michal Irani,et al.  Improving resolution by image registration , 1991, CVGIP Graph. Model. Image Process..

[117]  Matteo Pardini,et al.  Superresolution Differential Tomography: Experiments on Identification of Multiple Scatterers in Spaceborne SAR Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[118]  Xuelong Li,et al.  Image Super-Resolution With Sparse Neighbor Embedding , 2012, IEEE Transactions on Image Processing.

[119]  Roger Y. Tsai,et al.  Multiframe image restoration and registration , 1984 .

[120]  Subhashis Banerjee,et al.  Space-Time Super-Resolution Using Graph-Cut Optimization , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[121]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[122]  Yueting Zhuang,et al.  Hallucinating faces: LPH super-resolution and neighbor reconstruction for residue compensation , 2007, Pattern Recognit..

[123]  Dimitris Visvikis,et al.  Super-Resolution in Respiratory Synchronized Positron Emission Tomography , 2012, IEEE Transactions on Medical Imaging.

[124]  Thomas B. Moeslund,et al.  Super-resolution: a comprehensive survey , 2014, Machine Vision and Applications.

[125]  Barry E. Burke,et al.  Overview Paper - CCD Technology , 2006 .

[126]  Liangpei Zhang,et al.  A super-resolution reconstruction algorithm for hyperspectral images , 2012, Signal Process..

[127]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[128]  Gregory D. Hager,et al.  Real-time tracking of image regions with changes in geometry and illumination , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[129]  Subhasis Chaudhuri,et al.  Super-resolution imaging: use of zoom as a cue , 2004, Image Vis. Comput..

[130]  Liangpei Zhang,et al.  A locally adaptive L1-L2 norm for multi-frame super-resolution of images with mixed noise and outliers , 2014, Signal Process..

[131]  Yücel Altunbasak,et al.  Super-resolution still and video reconstruction from MPEG-coded video , 2002, IEEE Trans. Circuits Syst. Video Technol..

[132]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[133]  Haim Azhari,et al.  Super-resolution in PET imaging , 2006, IEEE Transactions on Medical Imaging.

[134]  H Stark,et al.  High-resolution image recovery from image-plane arrays, using convex projections. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[135]  M. Dirk Robinson,et al.  SkySat-1: very high-resolution imagery from a small satellite , 2014, SPIE Remote Sensing.

[136]  Wenge Huang,et al.  An improved Chan-Vese model without reinitialization for medical image segmentation , 2010, 2010 3rd International Congress on Image and Signal Processing.

[137]  Hong Chang,et al.  Super-resolution through neighbor embedding , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[138]  Dahua Lin,et al.  Hallucinating faces: TensorPatch super-resolution and coupled residue compensation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[139]  P. Magnan Detection of visible photons in CCD and CMOS: A comparative view , 2003 .

[140]  Desheng Wen,et al.  The progress of sub-pixel imaging methods , 2014, Photoelectronic Technology Committee Conferences.

[141]  Liangpei Zhang,et al.  A MAP Approach for Joint Motion Estimation, Segmentation, and Super Resolution , 2007, IEEE Transactions on Image Processing.

[142]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[143]  Michael Elad,et al.  A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution , 2014, IEEE Transactions on Image Processing.

[144]  Bryan C. Russell,et al.  Exploiting the sparse derivative prior for super-resolution , 2003 .

[145]  Kim-Hui Yap,et al.  Joint Image Registration and Super-Resolution From Low-Resolution Images With Zooming Motion , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[146]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[147]  Michael Elad,et al.  Robust shift and add approach to superresolution , 2003, SPIE Optics + Photonics.

[148]  Ruofeng Tong,et al.  Robust super resolution of compressed video , 2011, The Visual Computer.

[149]  Liang Tang,et al.  Spatially Adaptive Block-Based Super-Resolution , 2012, IEEE Transactions on Image Processing.

[150]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[151]  Yong Ge,et al.  Development and Testing of a Subpixel Mapping Algorithm , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[152]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[153]  Michal Irani,et al.  Super-resolution from a single image , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[154]  Edward A. Watson,et al.  High-Resolution Image Reconstruction from a Sequence of Rotated and Translated Frames and its Application to an Infrared Imaging System , 1998 .

[155]  Robert L. Stevenson,et al.  Spatial Resolution Enhancement of Low-Resolution Image Sequences A Comprehensive Review with Directions for Future Research , 1998 .

[156]  Li Chen,et al.  A Nonlinear Least Square Technique for Simultaneous Image Registration and Super-Resolution , 2007, IEEE Transactions on Image Processing.

[157]  Moshe Ben-Ezra,et al.  Penrose Pixels Super-Resolution in the Detector Layout Domain , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[158]  Michael Elad,et al.  Super Resolution With Probabilistic Motion Estimation , 2009, IEEE Transactions on Image Processing.

[159]  Ken D. Sauer,et al.  A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..

[160]  Thomas S. Huang,et al.  Coupled Dictionary Training for Image Super-Resolution , 2012, IEEE Transactions on Image Processing.

[161]  A. Murat Tekalp,et al.  High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[162]  Truong Q. Nguyen,et al.  Novel Example-Based Method for Super-Resolution and Denoising of Medical Images , 2014, IEEE Transactions on Image Processing.

[163]  Zhi Yuan,et al.  Fingerprint image enhancement by super resolution with early stopping , 2009, 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[164]  Zhouchen Lin,et al.  Penrose Pixels for Super-Resolution , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[165]  Russell M. Mersereau,et al.  A Super-Resolution Framework for 3-D High-Resolution and High-Contrast Imaging Using 2-D Multislice MRI , 2009, IEEE Transactions on Medical Imaging.

[166]  Hayit Greenspan,et al.  Super-Resolution in Medical Imaging , 2009, Comput. J..

[167]  Lei Zhang,et al.  AN adaptive L1–L2 hybrid error model to super-resolution , 2010, 2010 IEEE International Conference on Image Processing.

[168]  Kiyoharu Aizawa,et al.  Acquisition of very high resolution images using stereo cameras , 1991, Other Conferences.

[169]  Thomas S. Huang,et al.  Face hallucination VIA sparse coding , 2008, 2008 15th IEEE International Conference on Image Processing.

[170]  Lisimachos P. Kondi,et al.  A regularization framework for joint blur estimation and super-resolution of video sequences , 2005, IEEE International Conference on Image Processing 2005.

[171]  Deqing Sun,et al.  A Bayesian approach to adaptive video super resolution , 2011, CVPR 2011.

[172]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[173]  Lei Zhang,et al.  Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization , 2010, IEEE Transactions on Image Processing.

[174]  Michael K. Ng,et al.  Super-Resolution Reconstruction Algorithm To MODIS Remote Sensing Images , 2009, Comput. J..

[175]  Mohammad Alam,et al.  Superresolution Construction of Multispectral Imagery Based on Local Enhancement , 2008, IEEE Geoscience and Remote Sensing Letters.

[176]  Truong Q. Nguyen,et al.  A block-based super-resolution for video sequences , 2008, 2008 15th IEEE International Conference on Image Processing.

[177]  Aggelos K. Katsaggelos,et al.  High-resolution images from low-resolution compressed video , 2003, IEEE Signal Process. Mag..

[178]  Jorge Núñez,et al.  Super-Resolution of Remotely Sensed Images With Variable-Pixel Linear Reconstruction , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[179]  Shutao Li,et al.  Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation , 2013, IEEE Transactions on Medical Imaging.

[180]  A. Murat Tekalp,et al.  High-resolution image reconstruction from a low-resolution image sequence in the presence of time-varying motion blur , 1992, Proceedings of 1st International Conference on Image Processing.

[181]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[182]  Ying Wu,et al.  Super-Resolution Without Dense Flow , 2012, IEEE Transactions on Image Processing.

[183]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[184]  Edmund Y. Lam,et al.  Application of Tikhonov Regularization to Super-Resolution Reconstruction of Brain MRI Images , 2007, MIMI.

[185]  Ying Hu,et al.  Accelerating 3B single-molecule super-resolution microscopy with cloud computing , 2013, Nature Methods.

[186]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[187]  Liangpei Zhang,et al.  Regional Spatially Adaptive Total Variation Super-Resolution With Spatial Information Filtering and Clustering , 2013, IEEE Transactions on Image Processing.

[188]  Michael K. Ng,et al.  A Fast MAP Algorithm for High-Resolution Image Reconstruction with Multisensors , 2001, Multidimens. Syst. Signal Process..

[189]  Raymond H. Chan,et al.  An Adaptive Norm Algorithm for Image Restoration , 2011, SSVM.

[190]  Ye Zhang,et al.  Resolution enhancement of hyperspectral images using a learning-based super-resolution mapping technique , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[191]  Kwang In Kim,et al.  Example-Based Learning for Single-Image Super-Resolution , 2008, DAGM-Symposium.

[192]  José M. Bioucas-Dias,et al.  Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[193]  Stanley Osher,et al.  Image Super-Resolution by TV-Regularization and Bregman Iteration , 2008, J. Sci. Comput..

[194]  Michael Elad,et al.  Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images , 1997, IEEE Trans. Image Process..

[195]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[196]  N. K. Bose,et al.  High resolution image formation from low resolution frames using Delaunay triangulation , 2002, IEEE Trans. Image Process..

[197]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[198]  Pheng-Ann Heng,et al.  Adaptive total variation denoising based on difference curvature , 2010, Image Vis. Comput..

[199]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[200]  Michael Elad,et al.  Generalizing the Nonlocal-Means to Super-Resolution Reconstruction , 2009, IEEE Transactions on Image Processing.

[201]  Yi Wang,et al.  Super-resolution mosaicking of UAV surveillance video , 2008, 2008 15th IEEE International Conference on Image Processing.

[202]  Takeo Kanade,et al.  Limits on super-resolution and how to break them , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[203]  Shmuel Peleg,et al.  Image sequence enhancement using sub-pixel displacements , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[204]  Jian Yu,et al.  Restoration of images corrupted by mixed Gaussian-impulse noise via l1-l0 minimization , 2011, Pattern Recognit..

[205]  Pier Luigi Dragotti,et al.  Exact Feature Extraction Using Finite Rate of Innovation Principles With an Application to Image Super-Resolution , 2009, IEEE Transactions on Image Processing.

[206]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[207]  Peter Reinartz,et al.  Evaluation of Skybox Video and Still Image products , 2014 .

[208]  Kwang In Kim,et al.  Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[209]  Zhihui Wei,et al.  Efficient and Effective Total Variation Image Super-Resolution: A Preconditioned Operator Splitting Approach , 2011 .

[210]  Aggelos K. Katsaggelos,et al.  Variational Bayesian Super Resolution , 2011, IEEE Transactions on Image Processing.

[211]  Luc Van Gool,et al.  Anchored Neighborhood Regression for Fast Example-Based Super-Resolution , 2013, 2013 IEEE International Conference on Computer Vision.

[212]  William T. Freeman,et al.  Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[213]  Moon Gi Kang,et al.  Spatially adaptive high-resolution image reconstruction of low-resolution DCT-based compressed images , 2002, Proceedings. International Conference on Image Processing.