Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas

[1]  P. Fries,et al.  Attention Samples Stimuli Rhythmically , 2012, Current Biology.

[2]  P. Fries,et al.  Magnetoencephalography in Twins Reveals a Strong Genetic Determination of the Peak Frequency of Visually Induced Gamma-Band Synchronization , 2012, The Journal of Neuroscience.

[3]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[4]  A. Engel,et al.  Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception , 2011, Neuron.

[5]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[6]  T. Sejnowski,et al.  Mechanisms for Phase Shifting in Cortical Networks and their Role in Communication through Coherence , 2010, Front. Hum. Neurosci..

[7]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[8]  Gustavo Deco,et al.  Optimal Information Transfer in the Cortex through Synchronization , 2010, PLoS Comput. Biol..

[9]  Dimitri M. Kullmann,et al.  Oscillations and Filtering Networks Support Flexible Routing of Information , 2010, Neuron.

[10]  Robert Oostenveld,et al.  Visually induced gamma-band activity predicts speed of change detection in humans , 2010, NeuroImage.

[11]  Louise S. Delicato,et al.  Attention Reduces Stimulus-Driven Gamma Frequency Oscillations and Spike Field Coherence in V1 , 2010, Neuron.

[12]  J. Gordon,et al.  Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia , 2010, Nature.

[13]  Sebastiaan Overeem,et al.  Corticospinal Beta-Band Synchronization Entails Rhythmic Gain Modulation , 2010, The Journal of Neuroscience.

[14]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[15]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[16]  J. Swettenham,et al.  Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli. , 2009, Journal of neurophysiology.

[17]  Pascal Fries,et al.  A Microsaccadic Rhythm Modulates Gamma-Band Synchronization and Behavior , 2009, The Journal of Neuroscience.

[18]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[19]  R. Oostenveld,et al.  A MEMS-based flexible multichannel ECoG-electrode array , 2009, Journal of neural engineering.

[20]  Derek K. Jones,et al.  Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans , 2009, Proceedings of the National Academy of Sciences.

[21]  D. Paré,et al.  Coherent gamma oscillations couple the amygdala and striatum during learning , 2009, Nature Neuroscience.

[22]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[23]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.

[24]  Stefan Treue,et al.  Temporal dynamics of neuronal modulation during exogenous and endogenous shifts of visual attention in macaque area MT , 2008, Proceedings of the National Academy of Sciences.

[25]  Xoana G. Troncoso,et al.  Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. , 2008, Journal of vision.

[26]  Mingzhou Ding,et al.  Analyzing information flow in brain networks with nonparametric Granger causality , 2008, NeuroImage.

[27]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[28]  Nancy Kopell,et al.  Gamma Oscillations and Stimulus Selection , 2008, Neural Computation.

[29]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[30]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[31]  J. Schoffelen,et al.  Nonparametric statistical testing of coherence differences , 2007, Journal of Neuroscience Methods.

[32]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[33]  G. Rangarajan,et al.  Mitigating the effects of measurement noise on Granger causality. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[35]  Pascal Fries,et al.  Assessing Neuronal Coherence with Single-Unit, Multi-Unit, and Local Field Potentials , 2006, Neural Computation.

[36]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[37]  Robert Oostenveld,et al.  Localizing human visual gamma-band activity in frequency, time and space , 2006, NeuroImage.

[38]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[39]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[40]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[41]  R. Gattass,et al.  Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[42]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[43]  J. Schoffelen,et al.  Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction , 2005, Science.

[44]  W. Freiwald,et al.  Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. , 2004, Cerebral cortex.

[45]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[46]  G. V. Simpson,et al.  Phase Locking of Single Neuron Activity to Theta Oscillations during Working Memory in Monkey Extrastriate Visual Cortex , 2003, Neuron.

[47]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[48]  C. Elger,et al.  Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling , 2001, Nature Neuroscience.

[49]  O. Bertrand,et al.  Oscillatory Synchrony between Human Extrastriate Areas during Visual Short-Term Memory Maintenance , 2001, The Journal of Neuroscience.

[50]  S. Bressler,et al.  Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance , 2001, Biological Cybernetics.

[51]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[52]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[54]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[55]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[56]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[57]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[58]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  P König,et al.  Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[60]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[61]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[62]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[63]  J. Schoffelen,et al.  Behavioral / Systems / Cognitive Selective Movement Preparation Is Subserved by Selective Increases in Corticomuscular Gamma-Band Coherence , 2011 .

[64]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.