Path planning for coherent and persistent groups

This paper addresses the problem of group path planning while maintaining group coherence and persistence. Group coherence ensures that a group minimizes both longitudinal and lateral dispersion, and is achieved with the introduction of a deformation penalty to the cost formulation. When the deformation penalty is significantly high, a group may split and later merge. Group persistence is modeled by introducing split and merge actions in the action space, and adding a split penalty to the cost measure. We formulate the problem domain (state, action space, and cost formulation), present our path planning approach for coherent and persistent groups, and provide empirical results demonstrating the capabilities of our method on a variety of challenging scenarios.

[1]  Mark H. Overmars,et al.  Indicative routes for path planning and crowd simulation , 2009, FDG.

[2]  Mark H. Overmars,et al.  Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) , 2022 .

[3]  Kostas E. Bekris,et al.  Multi-level formation roadmaps for collision-free dynamic shape changes with non-holonomic teams , 2012, 2012 IEEE International Conference on Robotics and Automation.

[4]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[5]  Mark H. Overmars,et al.  Motion planning for coherent groups of entities , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[6]  Adrien Treuille,et al.  Continuum crowds , 2006, ACM Trans. Graph..

[7]  Taku Komura,et al.  Environment-aware real-time crowd control , 2012, SCA '12.

[8]  Roland Geraerts,et al.  Real‐time density‐based crowd simulation , 2012, Comput. Animat. Virtual Worlds.

[9]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[10]  Tsai-Yen Li,et al.  Motion planning for a crowd of robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[11]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[12]  Roland Geraerts,et al.  Planning short paths with clearance using explicit corridors , 2010, 2010 IEEE International Conference on Robotics and Automation.

[13]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[14]  Jean-Claude Latombe,et al.  Using a PRM planner to compare centralized and decoupled planning for multi-robot systems , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[15]  Lydia E. Kavraki,et al.  Randomized preprocessing of configuration for fast path planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[16]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[17]  Thierry Siméon,et al.  Multiple Path Coordination for Mobile Robots: A Geometric Algorithm , 1999, IJCAI.

[18]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[19]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[20]  Renato Silveira,et al.  Managing coherent groups , 2008 .

[21]  Marcelo Kallmann,et al.  Dynamic and Robust Local Clearance Triangulations , 2014, ACM Trans. Graph..

[22]  Tucker R. Balch,et al.  Social potentials for scalable multi-robot formations , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[23]  Kostas E. Bekris,et al.  Maintaining team coherence under the velocity obstacle framework , 2012, AAMAS.