Generative Music, Cognitive Modelling, and Computer-Assisted Composition in MusiCog and ManuScore

Music composition is a complex, multi-modal human activity, engaging faculties of perception, memory, motor control, and cognition, and drawing on skills in abstract reasoning, problem solving, creativity, and aesthetic evaluation. For centuries musicians, theorists, mathematicians—and more recently computer scientists—have attempted to systematize composition, proposing various formal methods for combining sounds (or symbols representing sounds) into structures that might be considered musical. Many of these systems are grounded in the statistical modelling of existing music, or in the mathematical formalization of the underlying rules of music theory. This thesis presents a different approach, looking at music as a holistic phenomenon, arising from the integration of perceptual and cognitive capacities. The central contribution of this research is an integrated cognitive architecture (ICA) for symbolic music learning and generation called MusiCog. Inspired by previous ICAs, MusiCog features a modular design, implementing functions for perception, working memory, long-term memory, and production/composition. MusiCog’s perception and memory modules draw on established experimental research in the field of music psychology, integrating both existing and novel approaches to modelling perceptual phenomena like auditory stream segregation (polyphonic voice-separation) and melodic segmentation, as well as higher-level cognitive phenomena like “chunking” and hierarchical sequence learning. Through the integrated approach, MusiCog constructs a representation of music informed specifically by its perceptual and cognitive limitations. Thus, in a manner similar to human listeners, its knowledge of different musical works or styles is not equal or uniform, but is rather informed by the specific musical structure of the works themselves. MusiCog’s production/composition module does not attempt to model explicit knowledge of music theory or composition. Rather, it proposes a “musically naïve” approach to composition, bound by the perceptual phenomena that inform its representation of musical

[1]  Jürgen Schmidhuber,et al.  Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010) , 2010, IEEE Transactions on Autonomous Mental Development.

[2]  Jürgen Schmidhuber,et al.  Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes , 2008, ABiALS.

[3]  C. Krumhansl Music Psychology and Music Theory: Problems and Prospects , 1995 .

[4]  Pat Langley,et al.  A Unified Cognitive Architecture for Physical Agents , 2006, AAAI.

[5]  G. Logan Toward an instance theory of automatization. , 1988 .

[6]  M. Schulkind,et al.  Musical Features That Facilitate Melody Identification: How Do You Know It's ““Your”” Song When They Finally Play It? , 2003 .

[7]  Guy J. Brown,et al.  Perceptual Grouping of Musical Sounds : A Computational Model , 1994 .

[8]  Horacio Vaggione,et al.  Some Ontological Remarks about Music Composition Processes , 2001, Computer Music Journal.

[9]  M. Scheerer,et al.  Problem Solving , 1967, Nature.

[10]  D. McCutchen Knowledge, Processing, and Working Memory: Implications for a Theory of Writing , 2000 .

[11]  M. Fayol,et al.  Is Written Language Production more Difficult than Oral Language Production? A Working Memory Approach , 1994 .

[12]  N. Geschwind Language and the brain. , 1972, Scientific American.

[13]  Effects of structure and serial position on memory errors in musical performance , 2010 .

[14]  Arne Eigenfeldt,et al.  The MusicDB: A Music Database Query System for Recombinance-based Composition in Max/MSP , 2008, ICMC.

[15]  Camilo Rueda,et al.  Computer-Assisted Composition at IRCAM: From PatchWork to OpenMusic , 1999, Computer Music Journal.

[16]  W. L. Windsor Music and Probability , 2009 .

[17]  Francisco Câmara Pereira Creativity and Artificial Intelligence , 2007 .

[18]  W. Jay Dowling,et al.  The Development of Music Perception and Cognition , 1999 .

[19]  William A. Woods,et al.  Computational Linguistics Transition Network Grammars for Natural Language Analysis , 2022 .

[20]  W. Jay Dowling,et al.  The Development of Perception of Interleaved Melodies and Control of Auditory Attention , 1991 .

[21]  M. Boltz Some structural determinants of melody recall , 1991, Memory & cognition.

[22]  Mario Baroni,et al.  Musical Grammar and the Study of Cognitive Processes of Composition , 1999 .

[23]  Giulio Sandini,et al.  A Survey of Artificial Cognitive Systems: Implications for the Autonomous Development of Mental Capabilities in Computational Agents , 2007, IEEE Transactions on Evolutionary Computation.

[24]  Carla L. Hudson Kam,et al.  Humans Rapidly Learn Grammatical Structure in a New Musical Scale. , 2010, Music perception.

[25]  Graeme Ritchie,et al.  Some Empirical Criteria for Attributing Creativity to a Computer Program , 2007, Minds and Machines.

[26]  Alain de Cheveigné,et al.  Pitch perception models , 2005 .

[27]  A. Gross The rhetorical tradition , 2005 .

[28]  C. Stevens Cross-cultural studies of musical pitch and time , 2004 .

[29]  Harold S. Powers,et al.  Language Models and Musical Analysis , 1980 .

[30]  Pat Langley,et al.  Cognitive architectures: Research issues and challenges , 2009, Cognitive Systems Research.

[31]  Mathieu Bergeron,et al.  Feature Set Patterns in Music , 2008, Computer Music Journal.

[32]  Stefan Koelsch,et al.  Spatial selective attention in a complex auditory environment such as polyphonic music. , 2010, The Journal of the Acoustical Society of America.

[33]  S. Koelsch Toward a Neural Basis of Music Perception – A Review and Updated Model , 2011, Front. Psychology.

[34]  Belinda Thom,et al.  Melodic segmentation: evaluating the performance of algorithms and musical experts , 2002, ICMC.

[35]  Irène Deliège,et al.  Mechanisms of cue extraction in memory for musical time , 1993 .

[36]  Michael T. Ghiselin,et al.  Darwin and Facial Expression: A Century of Research in Review.@@@Darwin on Man: A Psychological Study of Scientific Creativity. , 1974 .

[37]  David Cope,et al.  Composer's Underscoring Environment (CUE) , 1997, ICMC.

[38]  David Collins A synthesis process model of creative thinking in music composition , 2005 .

[39]  Robert O. Gjerdingen,et al.  The Cognition of Basic Musical Structures , 2004 .

[40]  D. Koniari,et al.  Categorization and Schematization Processes Used in Music Perception by 10- to 11-Year-Old Children , 2001 .

[41]  A. Baddeley Working memory: looking back and looking forward , 2003, Nature Reviews Neuroscience.

[42]  Mika Kuuskankare,et al.  An Overview of PWGL, a Visual Programming Environment for Music , 2009, Computer Music Journal.

[43]  Dileep George,et al.  Sequence memory for prediction, inference and behaviour , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  David E. Goldberg,et al.  Genetic Algorithms and Computer-Assisted Music Composition , 1991, ICMC.

[45]  Shlomo Dubnov,et al.  Universal Prediction Applied to Stylistic Music Generation , 2002 .

[46]  John R. Anderson ACT: A simple theory of complex cognition. , 1996 .

[47]  M. R. Jones,et al.  Some effects of rhythmic context on melody recognition. , 1984, The American journal of psychology.

[48]  Richard Parncutt,et al.  AN IMPROVED MODEL OF TONALITY PERCEPTION INCORPORATING PITCH SALIENCE AND ECHOIC MEMORY , 1993 .

[49]  Daniel Müllensiefen,et al.  Cognitive Adequacy in the Measurement of Melodic Similarity: Algorithmic vs. Human Judgments , 2004 .

[50]  Peter Swire,et al.  Learning to Create Jazz Melodies Using Deep Belief Nets , 2010, ICCC.

[51]  Andrew R. Brown,et al.  Modes of Compositional Engagement , 2001 .

[52]  Christian Lebiere,et al.  Sequence Learning in the ACT-R Cognitive Architecture: Empirical Analysis of a Hybrid Model , 2001, Sequence Learning.

[53]  Irène Deliège,et al.  Cue Abstraction as a Component of Categorisation Processes in Music Listening , 1996 .

[54]  B. Snyder Music and Memory: An Introduction , 2001 .

[55]  W. Dowling Scale and contour: Two components of a theory of memory for melodies. , 1978 .

[56]  Robert O. Gjerdingen,et al.  The Psychology of Music , 1972 .

[57]  Adam Ockelford,et al.  On Similarity, Derivation and the Cognition of Musical Structure , 2004 .

[58]  John N. Tsitsiklis,et al.  Actor-Critic Algorithms , 1999, NIPS.

[59]  Alex Bateman,et al.  An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.

[60]  Geraint A. Wiggins,et al.  Melodic Grouping in Music Information Retrieval: New Methods and Applications , 2010, Advances in Music Information Retrieval.

[61]  Robert M. Keller,et al.  Machine Learning of Jazz Grammars , 2010, Computer Music Journal.

[62]  R. Blair,et al.  An alternative method for significance testing of waveform difference potentials. , 1993, Psychophysiology.

[63]  L. Polansky,et al.  Temporal Gestalt Perception in Music , 1980 .

[64]  C. Stevens,et al.  Sweet Anticipation: Music and the Psychology of Expectation, by David Huron . Cambridge, Massachusetts: MIT Press, 2006 , 2007 .

[65]  E. Cambouropoulos Voice And Stream: Perceptual And Computational Modeling Of Voice Separation , 2008 .

[66]  David Cope,et al.  Computer Modeling of Musical Intelligence in EMI , 1992 .

[67]  J. Hayes,et al.  A Cognitive Process Theory of Writing , 1981, College Composition & Communication.

[68]  A. Gregory,et al.  Listening to Polyphonic Music , 1990 .

[69]  M. Rohrmeier A generative grammar approach to diatonic harmonic structure , 2007 .

[70]  T. Potter All My Children: A Portrait of Sir Andrzej Panufnik Based on Conversations with Tully Potter , 1991 .

[71]  Robert M. Keller,et al.  A Grammatical Approach to Automatic Improvisation , 2007 .

[72]  R. Mantie,et al.  The Council for Research in Music Education , 2015 .

[73]  Ron Sun,et al.  Accounting for the Computational Basis of Consciousness: A Connectionist Approach , 1999, Consciousness and Cognition.

[74]  Tom Collins,et al.  Improved methods for pattern discovery in music, with applications in automated stylistic composition , 2011 .

[75]  P. Láng The Enlightenment and Music , 1967 .

[76]  Otto E. Laske,et al.  The Computer as the Artist’s Alter Ego , 2017 .

[77]  Penousal Machado,et al.  A Corpus-Based Hybrid Approach to Music Analysis and Composition , 2007, AAAI.

[78]  Geraint A. Wiggins,et al.  EXPECTATION IN MELODY: THE INFLUENCE OF CONTEXT AND LEARNING , 2006 .

[79]  Aniruddh D. Patel Music, Language, and the Brain , 2007 .

[80]  Deborah McCutchen,et al.  From novice to expert: Implications of language skills and writing-relevant knowledge for memory during the development of writing skill , 2011 .

[81]  Belkacem Chikhaoui,et al.  Learning a Song: an ACT-R Model , 2009 .

[82]  Barry Vercoe,et al.  Music-listening systems , 2000 .

[83]  François Pachet,et al.  The Continuator: Musical Interaction With Style , 2003, ICMC.

[84]  Eugene Narmour,et al.  The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model , 1990 .

[85]  Jill Fain Lehman,et al.  A Gentle Introduction to Soar, an Architecture for Human Cognition. , 1996 .

[86]  Marc Leman,et al.  An introduction to the IPEM Toolbox for Perception-Based Music Analysis. , 2001 .

[87]  Holger H. Hoos,et al.  Voice Separation-A Local Optimisation Approach Voice Separation — A Local Optimisation Approach , 2002 .

[88]  Willem J. M. Levelt,et al.  Formal grammars in linguistics and psycholinguistics , 1974 .

[89]  Yannis Manolopoulos,et al.  Horizontal and Vertical Integration/Segregation in Auditory Streaming: A Voice Separation Algorithm for Symbolic Musical Data , 2007 .

[90]  Otto E. Laske,et al.  Toward an epistemology of composition , 1991 .

[91]  Stephen McAdams,et al.  Divided attention in music , 2000 .

[92]  I. Peretz,et al.  The role of contour and intervals in the recognition of melody parts: Evidence from cerebral asymmetries in musicians , 1992, Neuropsychologia.

[93]  W. Lyddon Creativity in Context: Update to "The Social Psychology of Creativity" , 1998 .

[94]  Christian Lebiere,et al.  Implicit and explicit learning in ACT-R , 1998 .

[95]  Paul Ralph,et al.  A Proposal for a Formal Definition of the Design Concept , 2009 .

[96]  Arne Eigenfeldt,et al.  The Evolution of Evolutionary Software: Intelligent Rhythm Generation in Kinetic Engine , 2009, EvoWorkshops.

[97]  Candace Brower,et al.  A Cognitive Theory of Musical Meaning , 2000 .

[98]  Christian Lebiere,et al.  Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation , 2006 .

[99]  Jon McCormack,et al.  Generative composition with Nodal , 2007 .

[100]  Roger Chaffin,et al.  Practicing Perfection: Piano Performance as Expert Memory , 2002, Psychological science.

[101]  Catherine J. Stevens,et al.  Music Perception and Cognition: A Review of Recent Cross-Cultural Research , 2012, Top. Cogn. Sci..

[102]  Irèène Delièège,et al.  Prototype Effects in Music Listening: An Empirical Approach to the Notion of Imprint , 2001 .

[103]  David Cope An Expert System for Computer-Assisted Composition , 1987 .

[104]  Moray Allan,et al.  Harmonising Chorales in the Style of Johann Sebastian Bach , 2002 .

[105]  Peter Desain,et al.  The Formation of Rhythmic Categories and Metric Priming , 2003, Perception.

[106]  Enrique Vidal,et al.  Learning Regular Grammars to Model Musical Style: Comparing Different Coding Schemes , 1998, ICGI.

[107]  Lionel Tarassenko,et al.  Cognitive Systems - Information Processing Meets Brain Science , 2005 .

[108]  Raymond MacDonald,et al.  Creativity and flow in musical composition: an empirical investigation , 2006 .

[109]  Arne Eigenfeldt,et al.  Evaluating Musical Metacreation in a Live Performance Context , 2012 .

[110]  David Cope,et al.  Recombinant music: using the computer to explore musical style , 1991, Computer.

[111]  L. Bernstein,et al.  The Unanswered Question: Six Talks at Harvard , 1977 .

[112]  Emilios Cambouropoulos,et al.  Musical Parallelism and Melodic Segmentation: : A Computational Approach , 2006 .

[113]  W. Jay Dowling,et al.  Context Effects on Melody Recognition: Scale-Step versus Interval Representations , 1986 .

[114]  Arne Eigenfeldt,et al.  Hierarchical Sequential Memory for Music: A Cognitive Model , 2009, ISMIR.

[115]  Nicola Dibben,et al.  Motivic Structure and the Perception of Similarity , 2001 .

[116]  Arne Eigenfeldt,et al.  Manuscore: Music Notation-Based Computer Assisted Composition , 2012, ICMC.

[117]  M. Tervaniemi,et al.  Superior pre-attentive auditory processing in musicians. , 1999, Neuroreport.

[118]  Geraint A. Wiggins,et al.  Computational Modeling of Music Cognition and Musical Creativity , 2011 .

[119]  C. Chuan Tone and Voice: A Derivation of the Rules of Voice-Leading from Perceptual Principles , 2001 .

[120]  E. Seeman Modeling and remodeling , 2020, Principles of Bone Biology.

[121]  Otto E. Laske,et al.  Composition Theory in Koenig's Project One and Project Two , 1981 .

[122]  Xavier Serra,et al.  Computational models of music perception and cognition I: the perceptual and cognitive processing chain , 2008 .

[123]  Eugene Fink,et al.  Integrating planning and learning: the PRODIGY architecture , 1995, J. Exp. Theor. Artif. Intell..

[124]  William L. Berz Working Memory in Music: A Theoretical Model , 1995 .

[125]  François Pachet,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Finite-Length Markov Processes with Constraints , 2022 .

[126]  E. Sober,et al.  The Principle of Parsimony , 1981, The British Journal for the Philosophy of Science.

[127]  Shlomo Dubnov,et al.  Anticipatory Model of Musical Style Imitation Using Collaborative and Competitive Reinforcement Learning , 2007, SAB ABiALS.

[128]  Clara Suied,et al.  Auditory Scene Analysis: The Sweet Music of Ambiguity , 2011, Front. Hum. Neurosci..

[129]  N. Mackintosh,et al.  Neurobiology, psychology and habituation. , 1987, Behaviour research and therapy.

[130]  John Fitch,et al.  Nature Music and Algorithmic Composition , 1995 .

[131]  Charles Ames,et al.  The Markov Process as a Compositional Model: A Survey and Tutorial , 2017 .

[132]  Darrell Conklin,et al.  Music Generation from Statistical Models , 2003 .

[133]  G. Wallas The art of thought , 1926 .

[134]  John Field,et al.  Language and the mind , 1968 .

[135]  Robert J. Zatorre,et al.  Mental Concerts: Musical Imagery and Auditory Cortex , 2005, Neuron.

[136]  C. Krumhansl,et al.  Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. , 1982, Psychological review.

[137]  F. Heider Gestalt theory: early history and reminiscences. , 1970, Journal of the history of the behavioral sciences.

[138]  Elaine Chew,et al.  Separating Voices in Polyphonic Music: A Contig Mapping Approach , 2004, CMMR.

[139]  D. Huron,et al.  What Is Melodic Accent? Converging Evidence from Musical Practice , 1996 .

[140]  Andrew R. Brown How the computer assists composers: A survey of contemporary practise. , 2001 .

[141]  A. Bregman,et al.  Auditory stream segregation and the control of dissonance in polyphonic music , 1987 .

[142]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[143]  Peter Desain,et al.  A (De)Composable Theory of Rhythm Perception , 1992 .

[144]  T. Eerola,et al.  Expectancy-Based Model of Melodic Complexity , 2000 .

[145]  E. Schellenberg,et al.  Infants' and adults' perception of scale structure. , 1999, Journal of experimental psychology. Human perception and performance.

[146]  D. Wessel,et al.  Acquiring New Musical Grammars – a Statistical Learning Approach , 2006 .

[147]  E. Margulis A Model of Melodic Expectation , 2005 .

[148]  Lawrence M. Zbikowski Musical Coherence, Motive, and Categorization , 1999 .

[149]  D. McCutchen A capacity theory of writing: Working memory in composition , 1996 .

[150]  M. Schmuckler Expectation in music: Investigation of melodic and harmonic processes. , 1989 .

[151]  E. M. Peterson,et al.  Creativity in Music Listening , 2006 .

[152]  Angelo C. Loula,et al.  Artificial Cognition Systems , 2006 .

[153]  Samin Karim Acquiring plans within situated, resource-bounded agents: a hybrid, BDI-based approach , 2009 .

[154]  D. Deutsch,et al.  Faster decline of pitch memory over time in congenital amusia , 2010, Advances in cognitive psychology.

[155]  Perry R. Cook,et al.  ChucK: A Concurrent, On-the-fly, Audio Programming Language , 2003, ICMC.

[156]  Gerhard Widmer,et al.  Separating voices in MIDI , 2006, ISMIR.

[157]  Maxime Crochemore,et al.  Factor Oracle: A New Structure for Pattern Matching , 1999, SOFSEM.

[158]  Judy Edworthy Interval and Contour in Melody Processing , 1985 .

[159]  Soraia Raupp Musse,et al.  Building artificial memory to autonomous agents using dynamic and hierarchical finite state machine , 2002, Proceedings of Computer Animation 2002 (CA 2002).

[160]  N. Cowan,et al.  Interactions between Transient and Long-Term Auditory Memory as Reflected by the Mismatch Negativity , 1996, Journal of Cognitive Neuroscience.

[161]  Ralph E. Johnson,et al.  An interactive environment for object-oriented music composition and sound synthesis , 1988, OOPSLA '88.

[162]  Robert J. Zatorre,et al.  Neuronal Correlates of Perception, Imagery, and Memory for Familiar Tunes , 2012, Journal of Cognitive Neuroscience.

[163]  Richard Parncutt Template‐matching models of musical pitch and rhythm perception , 1994 .

[164]  Scott J. Simon Computer models of musical creativity , 2007, J. Assoc. Inf. Sci. Technol..

[165]  François Pachet,et al.  Music Similarity Measures: What's the use? , 2002, ISMIR.

[166]  Heinrich Taube,et al.  Common music. A music composition language in common lisp and CLOS , 1991 .

[167]  P. Janata,et al.  Listening to polyphonic music recruits domain-general attention and working memory circuits , 2002, Cognitive, affective & behavioral neuroscience.

[168]  Geraint A. Wiggins,et al.  A Comparison of Statistical and Rule-Based Models of Melodic Segmentation , 2008, ISMIR.

[169]  Alexander Refsum Jensenius,et al.  Chunking in Music by Coarticulation , 2010 .

[170]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[171]  Laurel J. Trainor,et al.  Automatic Encoding of Polyphonic Melodies in Musicians and Nonmusicians , 2005, Journal of Cognitive Neuroscience.

[172]  Ah-Hwee Tan,et al.  Integrated cognitive architectures: a survey , 2007, Artificial Intelligence Review.

[173]  Olivier Lartillot,et al.  A Musical Pattern Discovery System Founded on a Modeling of Listening Strategies , 2004, Computer Music Journal.

[174]  M. Runco,et al.  Theories of Creativity , 1990, Encyclopedia of Creativity.

[175]  J. Hayes Modeling and Remodeling Writing , 2012 .

[176]  David C. Rubin,et al.  A Basic-Systems Approach to Autobiographical Memory , 2005 .

[177]  Eugene Narmour,et al.  The “genetic code” of melody: Cognitive structures generated by the implication-realization model , 1989 .

[178]  Hans Forssberg,et al.  Listening to rhythms activates motor and premotor cortices , 2009, Cortex.

[179]  Shlomo Dubnov,et al.  OMax brothers: a dynamic yopology of agents for improvization learning , 2006, AMCMM '06.

[180]  Anandalai From Igor Stravinsky, The Poetics of Music in the Form of Six Lessons , 2006 .

[181]  Petri Toiviainen,et al.  Motivic matching strategies for automated pattern extraction , 2007 .

[182]  D. Cope Virtual Music: Computer Synthesis of Musical Style , 2001 .

[183]  Arne Eigenfeldt,et al.  Considering Vertical and Horizontal Context in Corpus-based Generative Electronic Dance Music , 2013, ICCC.

[184]  I. Cross,et al.  Incidental and online learning of melodic structure , 2011, Consciousness and Cognition.

[185]  Jo Francis,et al.  Lovelace & Babbage and the creation of the 1843 'notes' , 2003, Inroads.

[186]  Wlodzislaw Duch,et al.  Cognitive Architectures: Where do we go from here? , 2008, AGI.

[187]  Anand S. Rao,et al.  BDI Agents: From Theory to Practice , 1995, ICMAS.

[188]  Elizabeth K. Johnson,et al.  Statistical learning of tone sequences by human infants and adults , 1999, Cognition.

[189]  Joel Chadabe,et al.  Interactive Composing: An Overview , 1984, ICMC.

[190]  T. Kohonen A self-learning musical grammar, or 'associative memory of the second kind' , 1989, International 1989 Joint Conference on Neural Networks.

[191]  K. Lashley The problem of serial order in behavior , 1951 .

[192]  Benjamin D. Smith,et al.  Improvising Musical Structure with Hierarchical Neural Nets , 2012, MUME@AIIDE.

[193]  James Kippen,et al.  MODELLING MUSIC WITH GRAMMARS: FORMAL LANGUAGE REPRESENTATION IN THE BOL PROCESSOR , 1992 .

[194]  Otto E. Laske,et al.  Composition theory: An enrichment of music theory , 1989 .

[195]  Reviel Netz The Fifth Hammer: Pythagoras and the Disharmony of the World , 2013 .

[196]  Arne Eigenfeldt,et al.  A Methodology for the Comparison of Melodic Generation Models Using Meta-Melo , 2013, ISMIR.

[197]  R. Henson Short-Term Memory for Serial Order: The Start-End Model , 1998, Cognitive Psychology.

[198]  Mark D. Plumbley,et al.  Information dynamics: patterns of expectation and surprise in the perception of music , 2009, Connect. Sci..

[199]  Joseph Schillinger,et al.  The Schillinger System of Musical Composition , 1945 .

[200]  Petri Toiviainen,et al.  MIR In Matlab: The MIDI Toolbox , 2004, ISMIR.

[201]  D. Deutsch,et al.  The Internal Representation of Pitch Sequences in Tonal Music , 1981 .

[202]  N. Cowan,et al.  The Magical Mystery Four , 2010, Current directions in psychological science.

[203]  X. Serra,et al.  Computational models of music perception and cognition II: Domain-specific music processing , 2008 .

[204]  Allen Newell,et al.  Human problem solving: The state of the theory in 1970. , 1971 .

[205]  Dean Keith Simonton,et al.  Thematic fame, melodic originality, and musical zeitgeist: A biographical and transhistorical content analysis. , 1980 .

[206]  Brad Johanson,et al.  GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters , 2007 .

[207]  Anna Jordanous Voice separation in Polyphonic Music: a Data-Driven Approach , 2008, ICMC.

[208]  E. Schellenberg,et al.  Simplifying the Implication-Realization Model of Melodic Expectancy , 1997 .

[209]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[210]  Jerome A. Feldman,et al.  Connectionist Models and Their Properties , 1982, Cogn. Sci..