Support vector machine classification of arterial volume‐weighted arterial spin tagging images

In recent years, machine‐learning techniques have gained growing popularity in medical image analysis. Temporal brain‐state classification is one of the major applications of machine‐learning techniques in functional magnetic resonance imaging (fMRI) brain data. This article explores the use of support vector machine (SVM) classification technique with motor‐visual activation paradigm to perform brain‐state classification into activation and rest with an emphasis on different acquisition techniques.

[1]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[2]  Essa Yacoub,et al.  The Evaluation of Preprocessing Choices in Single-Subject BOLD fMRI Using NPAIRS Performance Metrics , 2003, NeuroImage.

[3]  Janaina Mourão Miranda,et al.  Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data , 2005, NeuroImage.

[4]  Hesamoddin Jahanian,et al.  Arterial cerebral blood volume–weighted functional MRI using pseudocontinuous arterial spin tagging (AVAST) , 2015, Magnetic resonance in medicine.

[5]  Xiaoping P. Hu,et al.  Real‐time fMRI using brain‐state classification , 2007, Human brain mapping.

[6]  Jeffrey A. Fessler,et al.  Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities , 2003, IEEE Transactions on Medical Imaging.

[7]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[8]  Lutz Hamel,et al.  Knowledge Discovery with Support Vector Machines , 2009 .

[9]  V. Calhoun,et al.  Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder , 2008, Human brain mapping.

[10]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[11]  Thomas E. Nichols,et al.  Simple group fMRI modeling and inference , 2009, NeuroImage.

[12]  G. Crelier,et al.  Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[14]  Tao Jin,et al.  Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T , 2008, NeuroImage.

[15]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  Nikolaus Weiskopf,et al.  Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T , 2006, NeuroImage.

[17]  Seong-Gi Kim,et al.  Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: Implications for BOLD fMRI , 2001, Magnetic resonance in medicine.

[18]  L. K. Hansen,et al.  Generalizable Patterns in Neuroimaging: How Many Principal Components? , 1999, NeuroImage.

[19]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[20]  Hesamoddin Jahanian,et al.  Real‐time functional MRI using pseudo‐continuous arterial spin labeling , 2011, Magnetic resonance in medicine.

[21]  Hesamoddin Jahanian,et al.  B0 field inhomogeneity considerations in pseudo‐continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy , 2011, NMR in biomedicine.

[22]  Thomas E. Nichols,et al.  Diagnosis and exploration of massively univariate neuroimaging models , 2003, NeuroImage.

[23]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[24]  K. Uğurbil,et al.  High‐resolution, spin‐echo BOLD, and CBF fMRI at 4 and 7 T , 2002, Magnetic resonance in medicine.

[25]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[26]  J. Detre,et al.  Technical aspects and utility of fMRI using BOLD and ASL , 2002, Clinical Neurophysiology.

[27]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[28]  B. Ardekani,et al.  Controlling the false positive rate in fuzzy clustering using randomization: application to fMRI activation detection. , 2004, Magnetic resonance imaging.

[29]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[30]  Giancarlo Valente,et al.  Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning. , 2008, Magnetic resonance imaging.

[31]  Seong-Gi Kim,et al.  Cortical layer-dependent arterial blood volume changes: Improved spatial specificity relative to BOLD fMRI , 2010, NeuroImage.

[32]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[33]  S M Smith,et al.  Overview of fMRI analysis. , 2004, The British journal of radiology.

[34]  Jon-Fredrik Nielsen,et al.  Functional perfusion imaging using pseudocontinuous arterial spin labeling with low‐flip‐angle segmented 3D spiral readouts , 2013, Magnetic resonance in medicine.

[35]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[36]  Dinggang Shen,et al.  Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection , 2005, NeuroImage.

[37]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[38]  Yaniv Assaf,et al.  Cluster analysis of resting-state fMRI time series , 2009, NeuroImage.

[39]  T. L. Davis,et al.  Calibrated functional MRI: mapping the dynamics of oxidative metabolism. , 1998, Proceedings of the National Academy of Sciences of the United States of America.