SM identification of approximating models for H/sub /spl infin// robust control

Set membership (SM) H/sub /spl infin// identification of mixed parametric and nonparametric models is investigated, which aims to estimate a low order approximating model and an identification error, giving a measure of the unmodeled dynamics in a form well suited for H/sub /spl infin// control methodologies. In particular, the problem of estimating the parameters of the parametric part and the H/sub /spl infin// bound on the modeling error is solved using frequency domain data, supposing l/sub /spl infin// bounded measurement errors and exponentially stable unmodeled dynamics. The effectiveness of the proposed procedure is tested on some numerical examples, showing the advantages of the proposed methods over the existing nonparametric H/sub /spl infin// identification approaches are shown, in terms of lower model order and of tightness in the modeling error bounds.

[1]  J. Partington Robust identification and interpolation in H , 1991 .

[2]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[3]  Jozsef Bokor,et al.  System identification with generalized orthonormal basis functions , 1995, Autom..

[4]  Massimo Canale,et al.  Model Structure Selection in Identification for Control , 1996 .

[5]  Jie Chen,et al.  Worst case system identification in H∞: validation of a priori information, essentially optimal algorithms, and error bounds , 1995, IEEE Trans. Autom. Control..

[6]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[7]  Giovanni Zappa,et al.  Sequential approximation of parameter sets for identification with parametric and nonparametric uncertainty , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[8]  P. V. D. Hof,et al.  System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[9]  M. Overton Algorithms for nonlinear L1 and L∞ fitting , 1982 .

[10]  Graham C. Goodwin,et al.  Estimated Transfer Functions with Application to Model Order Selection , 1992 .

[11]  Håkan Hjalmarsson,et al.  Some Reflections on Control Design Based on Experimental Data , 1994 .

[12]  Er-Wei Bai,et al.  A Linear Robustly Convergent Interpolatory Algorithm For System Identification , 1992, 1992 American Control Conference.

[13]  Roy S. Smith,et al.  The Modeling of Uncertainty in Control Systems: Proceedings of the 1992 Santa Barbara Workshop , 1994 .

[14]  J. Partington,et al.  Robust approximation and identification in H∞ , 1991, 1991 American Control Conference.

[15]  M. Milanese,et al.  Worst-case /spl Lscr//sub 1/ identification using mixed parametric-nonparametric models , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[16]  B. Wahlberg System identification using Laguerre models , 1991 .

[17]  Mario Milanese,et al.  H∞ identification and model quality evaluation , 1997, IEEE Trans. Autom. Control..

[18]  Yeung Yam,et al.  A criterion for joint optimization of identification and robust control , 1992 .

[19]  Pertti M. Mäkilä,et al.  On identification of stable systems and optimal approximation , 1991, Autom..

[20]  Mario Milanese,et al.  H∞ identification and model structure selection , 1996 .

[21]  Mario Milanese,et al.  H∞ Identification with Mixed Parametric and Nonparametric Models , 1994 .

[22]  Hidenori Kimura,et al.  Structure of model uncertainty for a weakly corrupted plant , 1995, IEEE Trans. Autom. Control..